The Promise and Problems of (Auction) Market Design

Paul Milgrom
Nemmers Prize Lecture
November 5, 2009
Market design is a kind of economic engineering, utilizing laboratory research, game theory, algorithms, simulations, and more. Its challenges inspire us to rethink longstanding fundamentals of economic theory.
Two Areas of Market Design

• Matching Markets without Money
 • Doctors & Hospitals
 • School assignments
 • Kidneys
 • Course allocation

• Auction Markets: Matching and Pricing and More
 • Radio spectrum
 • Power (electricity and gas)
 • “Commodities”
 • Internet advertising
Revisiting Foundations

- How Should Products/Contracts Be Defined?
 - “A commodity is characterized by its physical properties, the date at which it will be available, and the location at which it will be available.” (Debreu, 1959)

- When (and How) Should “Different” Markets Be Linked?
 - Always/never, as in General Equilibrium Theory?

- What Messages Should a Mechanism Use?
 - Revelation principle: “any equilibrium outcome of an arbitrary mechanism can be replicated by an incentive-compatible direct mechanism.” (2007 Nobel citation)

- How Should Incentives Be Provided?
 - Use “an incentive-compatible direct mechanism”?
Product Definitions
Product Definitions in Practice

- Wheat
 - From *The Book of Wheat* by Peter Dondlinger, published 1908: “…for each transaction they would analyze a sample to determine its value. The measurement costs were very high.”

- Diamonds
 - BHP Billiton auction: 19 “deals” are sold in “splits,” with “book” adjustments. (Cramton, Dinkin & Wilson, 2009)

- Radio spectrum auctions
 - Bandwidth, geographic area and …

- Advertising impressions
 - Keywords, interests, demographics, behavioral history, etc.
Effects of Product Definition

- Wheat example. Setting standards...
 - Reduced measurement costs (and/or adverse selection)
 - Reduced shipping cost (grain cars on trains)
 - Enabled futures markets for wheat
- …but finer classifications may lead to…
 - Better matching of goods to buyers
 - More efficient quality choices by suppliers
 - Thinner markets within each classification
- Online advertising examples
 - Facebook: Cubs stadium merchandise
 - Yahoo/McDonald’s “Happy Contract”
- Publishers’ fears of “commoditization”
Product definition questions bleed into message design issues.
Message Length Problem

- A direct mechanism requires reporting a value for every possible combination of licenses.
- In the US, FCC radio spectrum auctions may involve more than 1000 licenses.
 - Example – Auction 66: 1132 licenses
 - A report in such a mechanism conveys 2^{1132} numbers.
- Possible fixes?
 - Multi-round auctions.
 - Messages report only parameterized preferences.
Simplified Messages*

- Limited reporting changes the set of Nash equilibria.
 - Some equilibrium profiles may be eliminated, if the corresponding reports are eliminated by the simplification.
 - Some equilibrium profiles may be added, if all profitable deviations are eliminated by the simplification.
- A simplified mechanism avoids introducing new equilibria if it has the outcome closure property…

*Based on Milgrom (2009), “Simplified Mechanisms with an Application to Sponsored Search Auctions”
Outcome Closure Property (Formal)

Standard Set-up:

- Message profiles: \(M = M_1 \times \ldots \times M_N \)
- Outcome set is \(X \subseteq X_1 \times \ldots \times X_N \).
- A mechanism is \(\Omega = (M, \omega) \) with \(\omega : M \rightarrow X \).
- Agent \(j \)'s has utility payoff is \(u_j : X_j \rightarrow \mathbb{R} \).

New Definitions:

- Let \(M' \) be a subset of \(M \). Then, \(\Omega' = (M', \omega_{\mid M'}) \) is a simplification of \(\Omega = (M, \omega) \) and \(\Omega \) is an extension of \(\Omega' \).
- A simplification has the outcome closure property if for every player \(j \) and every profile of restricted messages \(m_{-j} \) for players \(-j\),
 \[\text{cl}(\omega(M_j, m_j)) = \text{cl}(\omega(M'_{-j}, m_{-j})). \]
Again, in Ordinary English

- A mechanism \(\Omega = (M, \omega) \) is a pair consisting of a set of messages for each player and a function mapping messages to outcomes.
- A first mechanism is a *simplification* of a second if it permits only a more restricted set of messages, with the same outcome function.
 - In that case, the second mechanism is an *extension* of the first.
- A simplification has the *outcome closure property* if, when all players besides one (say, player \(j \)) report restricted messages, then any outcome player \(j \) could obtain by reporting any unrestricted message can be closely approximated for \(j \) by reporting some restricted message.
Example: Menu Auctions

- **Claim:** The menu auction (aka “pay-as-bid package auction”) restricted to additive bids satisfies the outcome closure property relative to the unrestricted menu auction.

- The restricted version is a simultaneous sealed-bid auction
 - Bidders make separate bids for each item offered.
 - Each item is awarded to its highest bidder.
 - Bidder pays the sum of its winning bids.

- Outcome closure
 - Package bid wins against additive bids if it exceeds their sum
 - Same set and price could be accomplished by an additive bid with each component winning.
National Resident Matching Program

- **Claim**: The Gale-Shapley mechanism restricted to responsive reports (as in the NRMP) satisfies the outcome closure property.

- In the National Resident Matching Program,
 - doctors report rank-order lists of hospitals and hospitals report a number of openings and a rank-order lists of doctors.
 - the doctor-best stable assignment with respect to reported preferences is selected.

- **Outcome closure**
 - Any class achieved by a hospital by reporting any *extended* (substitutes) message is also achieved by ranking those students at the top in the restricted message.
Simplification Theorems

• **Theorem.** Let u be a profile of continuous utility functions and let $\varepsilon \geq 0$. If some report profile is a (full-information) ε-Nash equilibrium of a simplified mechanism satisfying the outcome closure property, then it is also a full-information ε-Nash equilibrium of the extended mechanism.

 • The case $\varepsilon = 0$ describes Nash equilibrium.

• **Theorem.** (Eduardo Perez, 2009): If a mechanism does not satisfy the outcome closure property, then there exists a profile of continuous preferences such that some Nash equilibrium of the simplified mechanism is not a Nash equilibrium of the extended mechanism.
Simplification and Equilibrium

- In models where longer reports incur additional cost and omitted value reports are treated as zeroes, simplification can sometimes strictly and substantially improve equilibrium performance.
- In such models, bad strict Nash equilibria are associated with:
 - Coordination failures
 - Failures to make losing bids.
Google’s Search Ads Auction

- Search advertising sold at auction
 - $N \geq 2$ ad positions (higher positions worth strictly more)
 - $M \geq 2$ bidders
- Generalized Second Price Mechanism
 - ONE bid per bidder
 - Price is set by the just losing bid
 - Full information pure eqlm \Rightarrow positive equilibrium revenue
- A “Natural” Extension
 - Each bidder may bid a separate price for each ad position
 - Sequence of second price auctions with winner elimination.
 - Full information pure eqlm \Rightarrow zero equilibrium revenue
Rethinking Incentive Constraints
Incentives as Constraints (!?)

- Incentive-compatible mechanisms can have very bad properties.
 - In generic environments with (i) cash transfers, (ii) multi-dimensional signals, and (iii) interdependent values, a mechanism is ex post incentive-compatible if and only if its outcome is independent of all the signals. Jehiel, Meyer-ter-Vehn, Moldovanu and Zame (2006)*
 - Substituting private values for interdependent values, the unique package auction mechanism that is efficient, straightforward, and has zero payoffs for losing bidders is the Vickrey auction (Green and Laffont).
 - But it has problems related to low revenues, collusion, shill bidding and more.
 - For the course allocation problem, the unique efficient, incentive-compatible mechanism is random serial dictatorship, which can lead to terribly unfair outcomes.
- Are there mechanisms with practically helpful incentive properties that avoid these difficulties?
Vickrey Auction Has Multiple Flaws*

- Vickrey auctions can lead to *unacceptably low revenues* …
- An example with ample competition but *zero* revenue:

<table>
<thead>
<tr>
<th>Bidders</th>
<th>Item A</th>
<th>Item B</th>
<th>Pair AB</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>10**</td>
<td>9.99</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>9.99</td>
<td>10**</td>
<td>10</td>
</tr>
</tbody>
</table>

Ausubel and Milgrom (2005), “The Lovely but Lonely Vickrey Auction.”
More Flaws

- Vickrey auctions can lead to unacceptably low revenues, promote false-name bids, lead sellers to disqualify bidders…

<table>
<thead>
<tr>
<th>Bidders</th>
<th>Item A</th>
<th>Item B</th>
<th>Pair AB</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>10**</td>
<td>9.99</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>9.99</td>
<td>10**</td>
<td>10</td>
</tr>
</tbody>
</table>
More Flaws

- Vickrey auctions can lead to unacceptably low revenues, promote false-name bids, lead sellers to disqualify bidders, encourage collusion and ... more.

<table>
<thead>
<tr>
<th>Bidders</th>
<th>Item A</th>
<th>Item B</th>
<th>Pair AB</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>10**</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>3.99</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>3.99</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>
“...but...but...”

- Isn’t this analysis unfair? Don’t real bidders have too little information to make such moves?

- Vickrey auctions are said to be straightforward, but *in a relevant expanded strategy space, they are not!*
 - Bidders can have incentives to bid under multiple identities.
 - Auctioneers can have incentives to exclude bidders.
Weaker Incentives: Package Bidding

- One idea (Day & Milgrom, 2007): How can one minimize the incentives to misreport, given that the outcome must be core-selecting (lie in the core with respect to reported values)?

- **Theorem.** A package auction minimizes the sum of bidders’ maximum gains from deviations among core-selecting auctions if and only if it is a minimizes revenues on that set.
 - One-good example: second-price auction.
 - If goods for sale are substitutes, the Vickrey outcome is the unique minimum-revenue core outcome.
 - If goods are not substitutes, the Vickrey outcome need not lie in the core.
Equilibria of Core-Selecting Auctions

- Let π be a core *imputation* of the package auction setting – a vector of payoffs for individual participants.
- Consider the strategy profile in which each bidder n misreports its values, reducing them all by π_n. (“Truthful strategies, profit-target strategies, etc)

\textit{Theorem}. For every core-selecting package auction, the profile described above is a Simon-Zame (Nash) equilibrium profile and payoffs are given by π.

Another Approximate Approach

- Gains to deviants must vanish “in the limit” with replication.
 - Little or no incentive to misreport in settings with many participants and items.
Sample “Large Market” Results

Connecting “Different” Products and Markets
Connections Among “Markets”

- Agents care not about items, but about bundles of items.
 - Example: securities trading
- Different products may be close substitutes
- Securities traders can link transactions only imperfectly by trading over time at posted prices.

- A new development in security markets
 - CBOE and exact trades
 - Transparency issues in practice
Connecting Substitutes

- When items are “strong substitutes” for all bidders
 - Integer competitive equilibrium allocations exist
 - Gale-Shapley matching algorithm yields stable/core allocations
 - Vickrey and Min Revenue Core auctions have same outcomes
 - Vickrey mechanism discourages false name bids, collusion among losers, and bidder exclusion

- …but non-substitutes cases are hard…
 - When possible preferences strictly include the set of substitutes preferences, the corresponding extended results are all false.
Easy Auctions for Substitutes

• Simultaneous multiple round (SMR) auction

• SMR clock auctions
 • Ausubel (1996+…)

• Sealed-bid “assignment auction”
 • Milgrom (2009)
Mechanisms for General Cases

• Some theory research focuses on new mechanisms for non-substitutes cases, but experimenters still lead in this arena.

• “Experimentally tested” mechanisms
 • RAD
 • CCA
 • Plott mechanisms
 • UK auction mechanism

• …but heterogeneous performance
UK Band Planning

- Endogenous band plan and band conflation
- Sample Outcome: 9 unpaired and 14 paired lots.

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 |
|---|---|---|---|---|---|---|---|---|----|
| Paired-Uplink | Unpaired | G | B | Paired-Downlink |
UK Mechanism

- Research influencing the new UK spectrum auction.
 - Combinatorial clock auction (Porter-Rassenti-Roopnarine-Smith)
 - Clock proxy auction (Ausubel-Cramton-Milgrom)
 - Min-revenue core-selecting package auction (Day-Milgrom)
 - Revealed preference activity rule (Ausubel-Milgrom)
 - New computational methods (Day-Raghavan)
UK Auction Rules

- Two auction stages and three auction phases
 1. Principal stage assigns unspecific spectrum
 - Primary rounds: an ascending clock auction.
 - supplementary round: a direct mechanism which finds the total bid maximizing allocation and sets base prices equal to be the Vickrey-nearest minimum-revenue core prices.
 2. Assignment stage
 - A direct mechanism which finds the total bid maximizing assignment consistent with the principal stage and fixes “additional prices” to be the Vickrey-nearest minimum-revenue core prices.
Summary: Foundations Redux

- How Should Products/Contracts Be Defined?
- What Messages Should a Mechanism Use?
- How Should Incentives Be Provided?
- When (and How) Should “Different” Markets Be Linked?
End