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Abstract

This paper explores price formation in environments with multidimensional private

information. Asset sellers are informed both about their need to raise cash and about

the quality of the asset they are selling. Asset buyers have rational expectations about

the distribution of assets for sale at different prices. Any equilibrium with trade involves

partial pooling: identical assets sell for different prices, depending on the seller’s need

to raise cash; while conversely different assets sell for the same price. Sellers who set

a higher price are less likely to succeed at selling. We find a simple condition under

which a continuum of such equilibria exist. This condition admits the possibility that

some assets are intrinsically worthless, in which case there is also an equilibrium with

no trade. In general, the set of equilibria depends on the joint distribution of seller

and asset characteristics, and not just the support of that distribution.
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1 Introduction

This paper develops a model of trade in an asset market with adverse selection. The economy

is populated by a measure 1 of risk-neutral investors who live for two periods. At the

beginning of period 1, each investor is endowed with one unit of perishable fruit and one

tree that produces fruit in period 2. Trees are heterogeneous in terms of the amount of fruit

δ they produce in period 2. Investors are heterogenous in their discount factor β. At the

beginning of the period each investor observes the quality of his tree (the amount of fruit it

will produce) and his discount factor. Next, there is trade of fruit for trees. Investors may

use their fruit to buy trees, sell their tree for fruit, engage in both activities, or simply live in

autarky. We allow investors to buy or sell at any price, forming beliefs about the probability

that they will be able to trade at that price and about the composition of trees offered for

sale at that price. Trade is rationed by the short side of the market at any price, with all

traders on the long side of the market equally likely to be trade.

Our goal is to characterize the set of equilibria of this model. Towards that end, we

define a key model primitive, the expected quality of a tree δ conditional on the owner’s

continuation value v, the product of the owner’s discount factor β and the tree quality δ.

We assume throughout our analysis that this function is continuous and strictly increasing in

v. Under this parameter restriction, we prove that an equilibrium always exists. Moreover,

if the minimum tree quality is equal to the average tree quality among investors with the

lowest continuation value, then the equilibrium allocation is unique. On the other hand, if

the minimum tree quality is smaller, then we prove that a continuum of equilibria exists,

distinguished by the payoffs of different investors.

The set of equilibrium payoffs is parameterized by a single number, the lowest probability

(or highest price) at which an investor with the lowest continuation value is willing to sell

her tree. If the minimum tree quality is positive and equal to the average tree quality for

investors with the lowest continuation value, then investors with the lowest continuation

value sell their tree with probability 1. If the minimum tree quality is zero and the average

tree quality is positive, then investors with the lowest continuation value may sell their tree

with any probability between 0 and 1, depending on the equilibrium. If both the minimum

and average are positive, then there is a positive lower bound on the sale probability, while

if both are zero then investors with the lowest continuation value do not sell their tree.

In any equilibrium in which investors with the lowest tree quality sell their tree with

positive probability, some investors with higher continuation values sell their trees, but at

higher price and with a lower probability. On the other hand, all investors with the same

continuation value (except possibly those with the lowest continuation value) sell their trees
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at the same price. As a result, an investor is uncertain about exactly what quality tree he

will purchase at a given price. Conversely, if investors with the lowest quality tree do not

sell, then there is no trade in equilibrium.

Our model suggests two notions of how adverse selection can generate a crisis episode

in which trade collapses. The first is that the joint distribution of tree quality and asset

holdings changes so as to reduce the liquidity in any equilibrium. At an extreme, if the

expected tree quality of an investor with the lowest continuation value is zero, then all

trade must collapse. The second is a shift in the equilibrium holding fixed the exogenous

parameters. We argue that a shift to an equilibrium in which the investor with the lowest

continuation value trades with a lower probability might represent a buyers’ strike. In a

such an equilibrium, all investors set higher sale prices, some investors stop buying trees,

and liquidity, as measured either by the volume of fruit or the volume of trees that changes

hands, declines.

The equilibria of this model with multidimensional private information differ from our

previous work in which investors’ discount factors are observable (Guerrieri and Shimer,

2012). In that model, we found that there is a unique fully separating equilibrium and that

trees of higher quality trade at higher price in less liquid markets. It is worth highlighting four

dimensions in which the predictions of the two models differ. First, with multidimensional

private information there is price dispersion for trees of the same quality and heterogeneous

trees selling for the same price. In our prior work, there was a one-to-one mapping from

tree quality to price. Second, the set of equilibrium payoffs in this paper is affected by the

joint distribution of discount factors and tree quality, while in our prior work, equilibrium

payoffs only depended on the support of the distribution and the relative supply of fruit.

Third, with multidimensional private information some investors both buy and sell trees. In

contrast, with private information only about tree quality, investors only participate on one

side of the market. Finally, we find conditions under which a continuum of equilibria exist,

while in our previous work, the equilibrium was unique.

Our notion of equilibrium builds on Guerrieri, Shimer and Wright (2010). To our knowl-

edge, Chang (2012) is the only previous paper that has explored multidimensional private

information in that sort of environment. There are several important differences between

the results in the two papers. First, Chang looks at an environment in which the role of

an investor as a buyer or seller is determined exogenously. We allow investors to choose

whether to buy trees, sell trees, do both, or do neither, an important possibility in more

realistic environments. Second, Chang assumes that sellers are heterogeneous while buyers

are homogeneous. Moreover, all buyers value any asset more than any seller does, so all

trades are socially beneficial. This ensures that in equilibrium, all assets are sold with a
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positive probability. In our model, investors are heterogeneous, the decision to buy and sell

is endogenous, and in equilibrium some trees are transferred from investors who value them

more to investors who value them less. As a result, we find that some investors choose not to

attempt to sell their trees in equilibrium.1 Third, under an analogous parameter restriction

to ours, Chang only characterizes one equilibrium, while we prove that in our economy there

can generically be a continuum of equilibria. Fourth, Chang (2012) characterizes equilibria

when the parameter restriction fails. The current version of our paper does not do this.

Numerous previous papers (e.g. Eisfeldt, 2004; Kurlat, 2009; Daley and Green, 2010;

Chari, Shourideh and Zetlin-Jones, 2010; Chiu and Koeppl, 2011; Tirole, 2012) have devel-

oped models of adverse selection in which all trade occurs at a single price. Those papers

do not allow investors to consider trading at a different price. In contrast, this paper builds

on our previous work, (Guerrieri, Shimer and Wright, 2010; Guerrieri and Shimer, 2012),

allowing trade at any price but recognizing that sellers who demand a high price may be

rationed. This implies that in any equilibrium with trade, trade occurs at a range of prices.

The paper proceeds as follows. Section 2 lays out the basic model. We analyze the

equilibrium when there is symmetric information in Section 3. We then consider a one price

equilibrium in Section 4. Finally, we turn to our main model with multidimensional private

information in Section 5. We characterize the equilibrium through a sequence of lemmas and

establish the conditions under which a continuum of equilibria exist. Section 6 concludes

with a brief discussion of whether some of the equilibria can be understood as buyers’ strikes.

2 Model

The economy lasts for two periods, t = 1, 2. It is populated by a unit measure of risk-neutral

investors with heterogeneous discount factors β ∈ B ⊆ R+. Each investor is endowed

in period 1 with one unit of fruit and one tree that bears fruit in period 2. Trees are

heterogenous in the amount δ ∈ D ⊆ R+ of fruit they produce. Both fruit and trees are

divisible. Fruit is perishable and must be consumed within the period and consumption

must be nonnegative in each period.

At the beginning of period 1, each investor observes his type, that is, his discount factor β.

and the quality of his tree δ. Next, there is a market in which fruit and trees are exchanged.

Each investor makes independent buying and selling decisions and so may engage in trade

on both sides of the market, one side, or none. We impose a “fruit-in-advance constraint”:

an investor can only buy trees using the fruit he holds at the beginning of the period and

1Formally we model this as investors setting a high price at which they know they will be unable to sell
their tree.
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so must consume any fruit he gets from selling his tree.2 After the market meets, investors

consume any remaining period 1 fruit, c1. In period 2, each investor consumes the fruit

produced by the trees he holds in that period, c2. An investor with discount factor β seeks

to maximize E(c1 + βc2), where expectations recognize that the investor may be uncertain

about the whether he will succeed in buying and selling trees and about the quality of the

trees that he buys.

Let G : B×D 7→ [0, 1] denote the initial joint distribution of discount factors and endowed

tree quality, so G(β, δ) is the measure of individuals who have a discount factor no more

than β and are endowed with a tree bearing no more than δ fruit. We assume G is atomless,

that its support is convex, and let g denote the associated density. Formally, an individual

(β, δ, i) is a discount factor β ∈ B, a tree quality δ ∈ D, and a name i ∈ [0, g(β, δ)]. Because

there are many individuals, we ignore mixed strategies throughout this paper.

We analyze three different versions of this model. First, we study a benchmark model

with symmetric information. Second, we analyze a market structure in which all transactions

must take place at a single price. Third, we study a model where investors are privately

informed about both their tree quality and their discount factor, but they are allowed to

choose different prices.

3 Symmetric Information

Let us start by introducing the benchmark economy where information is complete. All

investors observe the quality of all trees and the discount factor of all investors. In this

environment, we look for the competitive equilibrium.

In a competitive equilibrium, different trees sell for different prices. An equilibrium is

then described by a price schedule p : D 7→ R+, where p(δ) denotes the price of a tree of type

δ. Each investor (β, δ, i) takes this price schedule as given and decides whether to sell their

tree, whether to use their fruit to buy a tree, and what type of tree to buy. Let Is(β, δ, i) be

an indicator function which takes value 1 if (β, δ, i) sells his tree. Let db(β, δ, i) denote the

type of tree that (β, δ, i) buys using his fruit, with db(β, δ, i) = ∅ indicating that the investor

consumes his fruit. Then a competitive equilibrium satisfies the following three conditions:

Definition 1 An equilibrium is given by functions p : D 7→ R+, Is : B × D× R+ 7→ {0, 1},
and db : B× D× R+ 7→ D ∪∅ where the functions satisfy the following conditions:

2Other assumptions are possible here. While they would change some of our calculations, relaxing this
constraint would not alter our main results.
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1. Optimal Selling Decision: given p(δ), for all (β, δ, i)

Is(β, δ, i) =







1

0
p(δ) ≷ βδ;

2. Optimal Buying Decision: given p(δ), for all (β, δ′, i),

db(β, δ
′, i) ∈ argmax

δ∈D

δ

p(δ)

if maxδ∈D βδ/p(δ) > 1 and db(β, δ
′, i) = ∅ otherwise;

3. Market Clearing: for each δ, p(δ) dµs(δ) = dµb(δ), where

µs(δ) ≡
∫ δ

0

∫

B

∫ g(β,δ′)

0

Is(β, δ
′, i) di dβ dδ

µb(δ) ≡
∫

db(β,δ′,i)≤δ

∫

B

∫ g(β,δ′)

0

di dβ dδ′

are the measure of trees worse than δ for sale and the measure of fruit used to buy trees

worse than δ, respectively.

The first condition requires that (β, δ, i) sells his tree if the price exceeds the value he

places on holding onto the tree, βδ. The second condition requires that (β, δ′, i) buys a

tree of type δ if this is the tree with the highest dividend-price ratio and if his discount

factor exceeds the price-dividend ratio. This follows immediately from the tradeoff between

consuming his unit of fruit or using it to buy 1/p(δ) type δ trees. The final equilibrium

condition implies that the amount of fruit used to purchase trees with dividends δ is equal

to the product of the number of such trees offered for sale and the sale price, so the market

for each type of tree clears.

It is straightforward to prove that the price function must satisfy p(δ) = β̂δ for some

β̂ ∈ [0, 1]. All investors with discount factor β > β̂ use their fruit to buy any type of tree

(since all have the same price-dividend ratio) and do not sell their tree. All investors with

discount factor β < β̂ sell their tree.

The market clearing condition determines the threshold β̂. With the characterization in

the previous paragraph, this reduces to the following single market clearing condition:

∫

D

∫ ∞

β̂

g(β, δ) dβ dδ = β̂

∫

D

∫ β̂

0

δg(β, δ) dβ dδ. (1)
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Figure 1: Competitive equilibrium with symmetric information

The left hand side is the fruit held by patient investors while the right hand side is the cost

of purchasing the trees held by the impatient investors.

We summarize this analysis in the next proposition:

Proposition 1 In a competitive equilibrium, p(δ) = β̂δ for all δ, where β̂ solves 1. More-

over, any investor (β, δ, i) sells his tree if and only if β < β̂ and uses his fruit to buy any

tree for sale otherwise.

Figure 1 represents the competitive equilibrium under symmetric information in the space

(β, δ). The equilibrium can be characterized by the cutoff β̂ so that all the investors with

β > β̂ always buy and β < β̂ always sell irrespective of the type of tree that they have.

4 One Price Equilibrium

Much of the literature on adverse selection in financial markets assumes that all trade occurs

at a common price p, so the equilibrium is pooling (see, for example, Eisfeldt, 2004; Kurlat,

2009; Daley and Green, 2010; Chari, Shourideh and Zetlin-Jones, 2010). In such papers, the

environment is set up in such a way that a seller cannot even consider selling his trees at

a price different than p. In this section, following this tradition, we consider a definition

of equilibrium where we restrict all trades to occur at a common price p. Investors must

decide whether to sell their trees at this price, knowing the quality of their tree. They also
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must decide whether to use their fruit to buy trees at this price, knowing only that someone

offered it for sale at this price. The rest of the environment is exactly as in our benchmark

model.

Again let Is(β, δ, i) indicate whether (β, δ, i) sells his tree. The decision of to buy trees is

simpler and can now also be reduced to an indicator Ib(β, δ, i). Then a one price equilibrium

satisfies four conditions:

Definition 2 A one price equilibrium is a price p ∈ R+, an expected tree quality ∆ ∈ D,

and functions Is : B×D×R+ 7→ {0, 1} and Ib : B×D×R+ 7→ {0, 1} satisfying the following

conditions:

1. Optimal Selling Decision: given p, for all (β, δ, i)

Is(β, δ, i) =







1

0
if p ≷ βδ;

2. Optimal Buying Decision: given p and ∆, for all (β, δ, i)

Ib(β, δ, i) =







1

0
if β∆ ≷ p;

3. Beliefs:

(a) if there exists a (β, δ, i) such that Is(β, δ, i) = 1, ∆ = E(δ|Is(β ′, δ′, i′) = 1);

(b) otherwise ∆ ∈ D;

4. Market Clearing:

∫

B

∫

D

∫ g(β,δ)

0

(Ib(β, δ, i)− pIs(β, δ, i)) di dδ dβ = 0

The first equilibrium condition is essentially unchanged from the competitive equilibrium.

An investor sells his tree if and only if the price exceeds his continuation value of holding

on to the tree, p > βδ. The second condition states that an investor uses his fruit to buy

trees if his discount factor times the expected quality of the tree he would buy, ∆, exceeds

exceeds the price he would pay. The third condition determines ∆, beliefs about the quality

of tree purchased. Assuming that in equilibrium at least one investor sells his tree, ∆ is

given by the expected tree quality of the trees that are sold; otherwise it is only restricted
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to lie in the the set of available tree qualities. The final condition again imposes that the

fruit market clears, so the fruit that investors use to buy trees is equal to the cost of buying

the trees sold by other investors.

Once again, there is a marginal investor β̂ who is just indifferent about buying trees,

p = β̂∆. Using the first and third parts of the definition of equilibrium, this reduces to

p = β̂

∫

D

∫ p/δ

0
δg(β, δ) dβ dδ

∫

D

∫ p/δ

0
g(β, δ) dβ dδ

. (2)

Finally, since all individuals more patient that β̂ buy trees while all trees held by individuals

with βδ < p are sold, the fruit market clearing condition reduces to

∫

D

∫ ∞

β̂

g(β, δ) dβ dδ = p

∫

D

∫ p/δ

0

g(β, δ) dβ dδ. (3)

This is summarized in the next proposition.

Proposition 2 Any pair (p, β̂) that satisfies equations (2) and (3) is a one price equilibrium.

Is(β, δ, i) = 1 iff βδ < p and Ib(β, δ, i) = 1 iff β > β̂, while ∆ = p/β̂.

Figure 2 represents a one price equilibrium. As in the case of symmetric information,

the buying decision is only affected by the patience of the investor, that is, all the investors

that are patient enough (with β > β̂) buy trees and all the investors who are more impatient

do not buy trees. However, the selling decision is now affected also by the type of tree that

the investor has. With one price, not only impatient investors sell trees, but also patient

investors who have a bad enough tree. These sellers exploit the fact that the price is high

relative to the value of their tree. In equilibrium, some investors therefore both buy and sell

trees while others, patient investors with a fairly good tree, neither buy not sell but instead

just eat their endowment of fruit.

If information is complete, clearly a one price equilibrium distorts the investors’ decisions,

in the sense that if they could trade for different prices, generically investors would like to

deviate. However, we are interested in understanding if a one price equilibrium would be

the natural outcome of an environment with private information. From our previous work

(Guerrieri and Shimer, 2012), we know that if the trees’ quality were the only source of

private information, investors would behave differently if they could post different prices

with the expectation of being rationed in equilibrium. That is, investors who are impatient

enough would choose to sell their trees and, in particular, they would choose to sell better

trees at higher prices with a higher probability of being rationed. In this paper, we are
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Figure 2: One price equilibrium.

interested in exploring what would happen in an environment where investors can choose

the trading price and also their discount factor is private information.

5 Multidimensional Private Information

We now turn to study our main economy in the presence of multidimensional private in-

formation. The environment is the same as before, except that we assume that both the

tree’s type and the degree of impatience of an investor are his own private information. Our

equilibrium notion builds on Guerrieri, Shimer and Wright (2010) and Guerrieri and Shimer

(2012).

At the beginning of the period, each investor (β, δ, i) knows his discount factor β and the

quality of his tree δ. A continuum of markets characterized by a price p ∈ R+ may open up.

Each investor makes an independent buying and selling decision. On the buying side, he has

to decide whether to consume his unit of fruit or to use it to buy trees and, if he buys trees,

he has to decide at which price. On the selling side, he has to choose whether to sell his tree

or not and, if he sells, he has to decide at which price. We assume that each tree or fruit can

be brought to only one market, so an effort to sell a tree at a price p is also a commitment

not to sell the tree at any other price.

In making their optimal trading decisions, investors must form beliefs about the trading

probability and the type trees for sale at any potential price, even those not offered in

equilibrium. Let Θ(p) denote the market tightness associated to price p, that is, the ratio
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of the amount of fruit buyers want to use to buy at price p, relative to the cost of the

trees that sellers want to sell at price p. If Θ(p) < 1, there is not enough fruit to buy all

the trees for sale at price p and the sellers are randomly rationed. If instead Θ(p) > 1,

there is more fruit than needed to buy all the trees for sale at price p and the buyers are

randomly rationed. Specifically, a seller who choose to trade at price p expects to sell with

probability min{Θ(p), 1}. Similarly, a buyer who decides to trade at price p expects to buy

with probability min{Θ(p)−1, 1}. A seller who is rationed keeps his tree and in period 2 eats

the fruit produced by his tree. A buyer who is rationed eats his fruit in period 1.

In addition, let ∆(p) denote buyers’ belief about the average dividend among the trees

offered for sale at a price p. If some trees are sold at a price p, these beliefs must be consistent

with the quality of trees offered for sale. Otherwise, as long as the buyer-seller ratio Θ(p)

is finite, buyers’ belief ∆(p) must be reasonable in the sense that there must be some set of

sellers with average tree quality ∆(p) who find it weakly optimal to set the price p. This

restriction on beliefs restricts the set of possible equilibria by ruling out equilibria that are

sustained by weird beliefs about markets that are inactive.

5.1 Equilibrium Definition

We are now ready to define an equilibrium. We let ps(β, δ, i) denote the optimal sale price

for investor (β, δ, i) and pb(β, δ, i) denote his optimal buy price. We do not offer investors an

explicit option not to sell their tree or not to buy a tree, but instead note that in equilibrium,

sellers (buyers) can assure that outcome by setting a sufficiently high (low) price.

Definition 3 An equilibrium is four functions ps : B×D×R+ 7→ R+, pb : B×D×R+ 7→ R+,

Θ : R+ 7→ [0,∞], ∆ : R+ 7→ D satisfying the following conditions:

1. Optimal Selling Decision: given Θ, for all (β, δ, i)

ps(β, δ, i) ∈ argmax
p≥βδ

(

min{Θ(p), 1}(p− βδ)
)

;

2. Optimal Buying Decision: given Θ and ∆, for all (β, δ, i)

pb(β, δ, i) ∈ argmax
p≥0

(

min{Θ(p)−1, 1}
(

β∆(p)

p
− 1

))

;

3. Beliefs: For all p ∈ R+ with Θ(p) < ∞,

(a) if there exists a (β, δ, i) with ps(β, δ, i) = p, ∆(p) = E(δ|ps(β ′, δ′, i′) = p);
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(b) otherwise there exists a (β1, δ1, i1) with δ1 ≤ ∆(p), p ≥ β1δ1, and

min{Θ(ps(β1, δ1, i1)), 1}
(

ps(β1, δ1, i1)− β1δ1
)

= min{Θ(p), 1}
(

p− β1δ1
)

;

and similarly a (β2, δ2, i2) with δ2 ≥ ∆(p), p ≥ β2δ2, and

min{Θ(ps(β2, δ2, i2)), 1}
(

ps(β2, δ2, i2)− β2δ2
)

= min{Θ(p), 1}
(

p− β2δ2
)

;

4. Market Clearing: for all p ≥ 0, dµb(p) = pΘ(p) dµs(p), where

µs(p) ≡
∫∫∫

ps(β,δ,i)≤p

di dδ dβ and µb(p) ≡
∫∫∫

pb(β,δ,i)≤p

di dδ dβ

are the measure of trees for sale at prices below p and the measure of fruit used to pur-

chase trees at prices below p. Moreover, if there exists a (β, δ, i) with ps(β, δ, i) = p and

Θ(p) > 0, then there exists a (β ′, δ′, i′) with pb(β
′, δ′, i′) = p; and if there exists a (β, δ, i)

with pb(β, δ, i) = p and Θ(p) < ∞, then there exists a (β ′, δ′, i′) with ps(β
′, δ′, i′) = p.

The first condition requires that investors make optimal selling decisions. Each seller

(β, δ, i) must set an optimal price for her tree.3 A seller who sets a price p only succeeds in

selling with probability Θ(p) if Θ(p) < 1. In this event, he gets p units of fruit but gives up

δ units of fruit tomorrow, which he values at βδ. If he fails to sell, he gains nothing. We

impose for expositional convenience the restriction that sellers never set a price below their

continuation value βδ.4

The second condition requires that investors make optimal buying decisions. Each buyer

(β, δ, i) sets an optimal price for buying trees.5 A buyer who sets a price p only succeeds in

buying with probability min{Θ(p)−1, 1}. In this event, he gives up a unit of fruit and gets

1/p trees, each of which he anticipates will produce ∆(p) fruit next period. If he fails to buy,

he gains nothing.

The first part of the third condition imposes that beliefs are consistent with the observed

trading patterns whenever possible. If at least one seller sets a price p, then the expected

dividend must be the average among the sellers who set that price. The second part of this

condition describes beliefs at prices that nobody sets. Intuitively, we require that buyers must

be able to rationalize the expected dividend as coming from some probability distribution

3There is no loss of generality in assuming that he sells the tree. Attempting to sell at any price p ≥ βδ
always weakly dominates not selling the tree.

4It is never strictly optimal for a seller (β, δ) to set a price p < βδ, and is only weakly optimal if Θ(p) = 0
and Θ(p′) = 0 for all p′ ≥ βδ.

5We prove below that in any equilibrium with trade, Θ(p) = 0 at sufficiently low prices p. Therefore
buyers can always be sure to consume their fruit in period 1 by setting a low price.
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over sellers, each of whom has a continuation value less than the price and finds setting this

price to be weakly optimal. In practice, this means that there must either be some individual

with dividend ∆(p) who finds it optimal to set the price p, or that there must be both an

individual with a better tree and an individual with a worse tree, both of whom find this

price optimal. In the latter case, appropriate weights on those two individuals justify the

expectation ∆(p).6

Finally, the last condition imposes market clearing. It requires that the buyer-seller ratio

Θ(p) at any price p is equal to the ratio of the measure of buyers purchasing at price p to

the product of the price and the measure of sellers selling at that price. The last piece of

this condition ensures that this holds even if both measures are zero yet a finite number of

buyers or sellers sets price p. For notational convenience alone, we do not impose that the

buyer-seller ratio is exactly equal to Θ(p) in this case.

5.2 Parameter Restriction

Let Γ(v) ≡ E(δ|βδ = v) denote the expected dividend conditional on an individual’s contin-

uation value βδ = v. It is straightforward to prove that

Γ(v) ≡
∫

D
g
(

v
δ
, δ
)

dδ
∫

D

1
δ
g
(

v
δ
, δ
)

dδ
,

a function of the joint density g, a model primitive We focus our analysis on the case where

the following restriction holds:

Assumption 1 Assume Γ is continuous and increasing.

We then define some key objects. The first is the lowest continuation value in the economy:

v = min
(β,δ,i)

βδ.

The second is the average tree quality among the trees held by investors with the lowest

continuation value, γ ≡ Γ(v). The third is the worst tree quality among those investors with

the lowest continuation value:

δ = min
(β,δ,i)

δ s.t. βδ = v.

In many cases, v will be the worst tree held by any individual, but this need not be the case

if tree holdings and discount factors are correlated.

6In our previous research (Guerrieri, Shimer and Wright, 2010; Guerrieri and Shimer, 2012), the analogous
condition defined a probability distribution over seller types at each price p. None of the results in this paper
would change if we used that definition, but the one we use here is simpler to apply.
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A distribution function that satisfies our assumption is G(β, δ) = βαδα+k, defined on

B× D = [0, 1]2, with α > 0 and α + k > 0. Then

Γ(v) =
k
(

1− vk+1
)

(1 + k)
(

1− vk
) ,

which is continuous and increasing. In this case, v = δ = 0 while γ = max{0, k/(1 + k)}.
We will use this example to illustrate some of our results.

5.3 Equilibrium Characterization

We characterize the set of equilibria through a series of lemmas.

We start with a partial characterization of the equilibrium buyer-seller ratio Θ(p) by

dividing it into three regions. We prove that there is a price p such that for all p < p,

Θ(p) = ∞, while for all p > p, Θ(p) < 1; and that there is a price p̄ ≥ p such that for all

p < p̄, Θ(p) > 0 while for all p > p̄, Θ(p) = 0. We also prove that if p < p̄, Θ(p) ≥ 1. Note

that the proof does not establish that either of the bounds, p and p̄, is positive or finite, nor

does it establish that the bounds differ from each other. In other words, we do not establish

that all three regions of the price space exists.

The proof of this lemma uses the fact that every price p with Θ(p) < ∞ must be optimal

for some seller, the third part of the definition of equilibrium. Sellers are willing to set a

lower price only if they are compensated with a higher trading probability.

Lemma 1 There are numbers 0 ≤ p ≤ p̄ ≤ ∞ such that:

Θ(p)



















= ∞ p < p

∈ (0, 1) if p ∈ (p, p̄)

= 0 p > p̄.

In addition, if p < p̄ then Θ(p) ≥ 1.

Proof. To find a contradiction, first suppose there are prices p1 < p2 such that Θ(p2) ≥ 1

and Θ(p1) < ∞. Part 3 of the definition of equilibrium implies that there is a (β, δ, i) with

βδ ≤ p1 and

min{Θ(p1), 1}(p1 − βδ) ≥ min{Θ(p2), 1}(p2 − βδ).

Since p1 ≥ βδ,

p1 − βδ ≥ min{Θ(p1), 1}(p1 − βδ).
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Since Θ(p2) ≥ 1,

min{Θ(p2), 1}(p2 − βδ) = p2 − βδ.

But now combining inequalities implies p1 ≥ p2, a contradiction. Therefore if Θ(p2) ≥ 1,

Θ(p1) = ∞ for all p1 < p2. We can then define p as the maximum p such that Θ(p′) = ∞
for all p′ < p and conclude that for all p > p, Θ(p) < 1.

Now take any price p1 with Θ(p1) = 0. Again, there is a (β, δ, i) with βδ ≤ p1 for whom

p1 is weakly optimal. In particular, for any other price p2 > p1,

min{Θ(p1), 1}(p1 − βδ) ≥ min{Θ(p2), 1}(p2 − βδ).

Since the left hand side is zero, the right hand side must be as well. Since p2 > p1 ≥ βδ,

this proves Θ(p2) = 0. We can then define p̄ as the minimum p such that Θ(p′) = 0 for all

p′ > p. Obviously p̄ ≥ p. This proves the first part of the result.

Finally, suppose p̄ > p and Θ(p) < 1. Part 3 of the definition of equilibrium implies there

is some a (β, δ, i) with βδ ≤ p who finds the sale price p optimal:

min{Θ(p), 1}(p− βδ) ≥ min{Θ(p), 1}(p− βδ)

for all p ≥ βδ. If p = βδ, the left hand side is zero, but the right hand is positive at all

p ∈ (p, p̄). Therefore p > βδ. But now consider a slightly lower price, p ∈
(

Θ(p)p + (1 −
Θ(p))βδ, p). Since p < p, Θ(p) = ∞, and so (β, δ, i) prefers selling at price p to selling at p,

a contradiction. This proves Θ(p) ≥ 1. �

It is worth stressing that Lemma 1 does not pin down Θ(p̄). We return to the value of

the buyer-seller ratio at this price at the end of the proof, in Lemma 8, where we prove that

under a mild regularity condition Θ(p) is continuous at p̄ when p < p̄.

We next prove that the function Θ is decreasing when p ∈ [p, p̄) and bound the slope of

the function. This implies in particular that min{Θ(p), 1} is continuous on this set. Our

proof again exploits the same property of equilibrium, that every price is optimal for some

seller.

Lemma 2 Take any prices p1 < p2 ≤ p̄ with Θ(p1) < ∞. Any investor (β1, δ1, i1) who finds

the sale price p1 weakly optimal has β1δ1 < p1 and

−Θ(p2)

p1 − β1δ1
≥ Θ(p2)−Θ(p1)

p2 − p1
.

In particular, Θ is strictly decreasing on [p, p̄]. If in addition p2 < p̄, any investor (β2, δ2, i2)
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who finds the sale price p2 weakly optimal has β2δ2 < p2 and

Θ(p2)−min{Θ(p1), 1}
p2 − p1

≥ −min{Θ(p1), 1}
p2 − β2δ2

.

Proof. Since Θ(p1) < ∞, part 3 of the definition of equilibrium implies there is a (β1, δ1, i1)

with β1δ1 ≤ p1 who finds p1 weakly optimal:

min{Θ(p1), 1}
(

p1 − β1δ1
)

≥ max
p≥β1δ1

(

min{Θ(p), 1}
(

p− β1δ1
))

.

If p1 = β1δ1, the left hand side evaluates to 0 and so the right hand side implies Θ(p) = 0

for all p > p1. Lemma 1 then implies p1 ≥ p̄, contradicting our assumption that p1 < p2 ≤ p̄

and proving p1 > β1δ1. Now the fact that (β1, δ1, i1) prefers p1 to p2 > p1 implies

min{Θ(p1), 1}
(

p1 − β1δ1
)

≥ Θ(p2)
(

p2 − β1δ1
)

,

where we use Lemma 1 to note that Θ(p1) < ∞ implies p1 ≥ p, hence p2 > p, hence

Θ(p2) < 1. Algebraic manipulation of this inequality proves that

−Θ(p2)

p1 − β1δ1
≥ Θ(p2)−min{Θ(p1), 1}

p2 − p1
.

Moreover, Θ(p1) ≥ min{Θ(p1), 1}, giving the result in the statement of the lemma. Since

the left hand side is strictly negative, Θ(p2) < Θ(p1) and hence Θ(p) is strictly decreasing.

When p2 < p̄, the statement of the lemma also specifies a lower bound on the slope. We

find it symmetrically. Since p1 < p2 and Θ(p1) < ∞, Lemma 1 implies Θ(p2) < ∞ as well.

Then the same logic as in the previous paragraph implies that when p2 < p̄, we can find

a (β2, δ2, i2) with β2δ2 < p2 for whom p2 is an optimal selling price. Since p2 > p1 ≥ p,

Lemma 1 implies Θ(p2) < 1. The fact that (β2, δ2, i2) does not prefer price p1 to p2 implies

either that p1 ≥ β2δ2 and

Θ(p2)
(

p2 − β2δ2
)

≥ min{Θ(p1), 1}
(

p1 − β2δ2
)

,

or that p1 < β2δ2, in which case the inequality holds trivially. The result then follows from

algebraic manipulation of this inequality. �

The next lemma shows that an investor with a higher continuation value for his tree

attempts to sell it at a weakly higher price. The proof is simply based on the preferences of

the seller, i.e. part 1 of the definition of equilibrium.
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Lemma 3 Take any (β1, δ1, i1) and (β2, δ2, i2) with β1δ1 < β2δ2 and either Θ(ps(β1, δ1, i1)) >

0 or Θ(ps(β2, δ2, i2)) > 0. Then ps(β2, δ2, i2) ≥ ps(β1, δ1, i1) ≥ p.

Proof. To start, suppose there is a (β, δ, i) with ps(β, δ, i) ≡ p < p. Part 1 of the definition

of equilibrium implies p ≥ βδ and min{Θ(p), 1}(p − βδ) ≥ min{Θ(p′), 1}(p′ − βδ), where

p′ = 1
2
(p+p). Lemma 1 implies both minima evaluate to 1, and so this implies p ≥ p′, which

contradicts p < p. Therefore ps(β, δ, i) ≥ p.

For the remainder of this proof, let p1 ≡ ps(β1, δ1, i1) ≥ p and p2 ≡ ps(β2, δ2, i2) ≥ p. If

p2 ≥ β1δ1, part 1 of the definition of equilibrium implies

min{Θ(p1), 1}(p1 − β1δ1) ≥ min{Θ(p2), 1}(p2 − β1δ1). (4)

If p2 < β1δ1, the right hand side of this inequality is non positive and so the inequality also

obtains. The same logic implies

min{Θ(p2), 1}(p2 − β2δ2) ≥ min{Θ(p1), 1}(p1 − β2δ2). (5)

Now to find a contradiction, suppose p1 > p2 ≥ p. We now consider two cases:

1. p̄ ≥ p1 > p. Lemma 1 implies Θ(p1) < 1 and Lemma 2 implies Θ(p1) < Θ(p2). Adding

inequalities (4)–(5), we obtain

(Θ(p1)−min{Θ(p2), 1})(β2δ2 − β1δ1) ≥ 0

Since β2δ2 > β1δ1, this implies Θ(p1) ≥ min{Θ(p2), 1}, a contradiction.

2. p1 > p̄. Lemma 1 implies Θ(p1) = 0 and so Θ(p2) > 0 by assumption. Part 1 of the

definition of equilibrium implies p2 ≥ β2δ2, while β2δ2 > β1δ1 by assumption. This

implies the right hand side of inequality (4) is strictly positive, while the left hand side

is zero, a contradiction. �

We next prove the result in Lemma 3 is strict: that any two investors selling at the

same price must have the same continuation value, or equivalently, an investor with a higher

continuation value for his tree attempts to sell it at a higher price. This result uses much

more of the structure of equilibrium, and in particular uses Assumption 1. We prove that if

sellers with two distinct continuation values find the same price optimal, then a buyer would

prefer to purchase trees at a slightly higher price, knowing that the expected dividend would

be discretely higher.
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Lemma 4 Impose Assumption 1. Take any (β1, δ1, i1) and (β2, δ2, i2) with β1δ1 < β2δ2 and

either Θ(ps(β1, δ1, i1)) > 0 or Θ(ps(β2, δ2, i2)) > 0. Then ps(β2, δ2, i2) > ps(β1, δ1, i1) ≥ p.

Proof. We prove that if ps(β1, δ1, i1) = ps(β2, δ2, i2) = p and Θ(p) > 0, β1δ1 = β2δ2.

Together with Lemma 3, this establishes our result. Let v2 = sup{βδ|ps(β, δ, i) = p} and

v1 = inf{βδ|ps(β, δ, i) = p}. To find a contradiction, assume v2 > v1. Note that part 1 of

the definition of equilibrium imposes p ≥ v2, while Lemma 3 implies p ≥ p.

We first prove that for any (β, δ, i) with v2 > βδ > v1, ps(β, δ, i) = p. Since βδ > v1

and Θ(p) > 0, Lemma 3 implies ps(β, δ, i) ≥ p. Since βδ < v2, the same lemma implies

ps(β, δ, i) ≤ p. Therefore ps(β, δ) = p.

Since Γ(v) is increasing by Assumption 1, Γ(v2) > Γ(v1). Moreover, since all sellers (β, δ)

with βδ ∈ (v1, v2) set price p and the support of the type distribution is convex, ∆(p) ∈
(Γ(v1),Γ(v2)). In addition, for p′ > p and (β ′, δ′, i′) with ps(β

′, δ′, i′) = p′, Lemma 3 implies

β ′δ′ ≥ v2 so ∆(p′) ≥ Γ(v2). In particular, for all p′ ∈
(

p, pΓ(v2)/∆(p)
)

, ∆(p′)/p′ > ∆(p)/p.

Next, we use part 4 of the definition of equilibrium, market clearing, evaluated at p. Since

Θ(p) > 0 and a positive measure dµs(p) of sellers set price p, all (β, δ, i) with βδ ∈ (v1, v2),

it must the case that there is also a positive measure of buyers, dµb(p) = pΘ(p)dµs(p). Since

dµb(p) ≤ 1, the total measure of potential buyers, Θ(p) < ∞ whenever a positive measure

of sellers sets the price p. Then part 2 of the definition of equilibrium implies that for any

(β, δ, i) with pb(β, δ, i) = p, β∆(p) ≥ p, since it is always possible to set a price p′ < p with

Θ(p′) = ∞. The same condition also implies that for all p′,

min{Θ(p)−1, 1}
(

β∆(p)

p
− 1

)

≥ min{Θ(p′)−1, 1}
(

β∆(p′)

p′
− 1

)

.

Recall that at any p′ ∈
(

p, pΓ(v2)/∆(p)
)

, ∆(p)/p < ∆(p′)/p′, so β∆(p′) > p′. If β∆(p) = p, it

follows that Θ(p′) = ∞. If β∆(p) > p, we still must have min{Θ(p)−1, 1} > min{Θ(p′)−1, 1},
so in particular Θ(p′) > 1. However Lemma 1 implies Θ(p′) < 1 for all p′ > p, a contradiction

of p′ > p ≥ p. �

We next take advantage of the fact that each price is set by only one continuation value

to find an expression for the buyer-seller ratio only as a function of the continuation value

of the seller who sets that price.

Lemma 5 Impose Assumption 1 and assume p̄ > p. Define V (p) such that V (p) = βδ
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implies p is a weakly optimal sale price for every (β, δ, i). Then for all p ∈ (p, p̄),

Θ(p) = exp

(

−
∫ p

p

1

p′ − V (p′)
dp′

)

. (6)

Proof. Lemma 4 implies that it is possible to define a nondecreasing, continuous function

V (p) as described in the statement of the lemma. Then Lemma 2 implies that for any p < p′

in the interval (p, p̄),
−Θ(p′)

p− V (p)
≥ Θ(p′)−Θ(p)

p′ − p
≥ −Θ(p)

p′ − V (p′)
.

Taking the limit as p′ → p, we get that both of the extreme limits converge and so

Θ′(p) =
−Θ(p)

p− V (p)
.

It is straightforward to solve this differential equation to get

Θ(p) = θ0 exp

(

−
∫ p

p

1

p′ − V (p′)
dp′

)

for some constant θ0. Since Θ(p) < 1 for all p > p, θ0 ≤ 1. Since Θ(p) ≥ 0 for all p, θ0 ≥ 0.

And if θ0 = 0, Lemma 1 implies p̄ = p. This proves θ0 ∈ (0, 1].

Now to find a contradiction, suppose θ0 < 1. For all p ∈ [p, p̄) and any (β, δ) with

βδ = V (p), Part 1 of the definition of equilibrium implies βδ < p; otherwise any price

p′ ∈ (p, p̄) would be preferred by the seller. In particular, continuity of V and V (p) < p

implies that there exists p > p such that θ0p + (1 − θ0)V (p) < p and so V (p) < p. Now

for any (β, δ, i) with βδ = V (p), setting the price p and selling for sure dominates setting

the price p and selling with probability Θ(p) < θ0, contradicting part 1 of the definition of

equilibrium. This proves θ0 = 1 and establishes equation (6). �

We next show that any investor who sells at the price p̄ is just indifferent about selling.

The details of the proof depend on whether Θ(p) > 0.

Lemma 6 Impose Assumption 1 and assume p̄ > p. Let (β, δ, i) with βδ ≤ p̄ be a seller who

finds price p̄ weakly optimal. Then βδ = p̄.

Proof. To find a contradiction, suppose p̄ > βδ. We consider two cases. First, if Θ(p̄) = 0,

then (β, δ, i) earns higher profits selling at any price p ∈ (βδ, p̄) than at p̄, since Θ(p)(p−βδ) >
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0 = Θ(p̄)(p̄ − βδ). Second, if Θ(p̄) > 0, take any (β ′, δ′, i′) with β ′δ′ ∈ (βδ, p̄). From Lem-

mas 3 and 4, we know that ps(β
′, δ′, i′) > p̄ because β ′δ′ > βδ and hence, from Lemma 1,

we know that Θ(ps(β
′, δ′, i′)) = 0. Then, such a seller would prefer to sell for p̄, since

Θ(p̄)(p̄ − β ′δ′) > 0 = Θ(ps(β
′, δ′, i′))(ps(β

′, δ′, i′) − β ′δ′). This is a contradiction, which

proves p̄ = βδ. �

We use this to establish that every seller (β, δ, i) with p̄ ≥ βδ > v finds a unique price

p ∈ (p, p̄) optimal, where v is the minimum value of βδ in the population.

Lemma 7 Impose Assumption 1 and assume p̄ > p. Take any investors (β, δ, i) and

(β ′, δ′, i′) with p̄ > βδ = β ′δ′ > v. Then ps(β, δ, i) = ps(β
′, δ′, i′) ∈ (p, p̄).

Proof. To find a contradiction, assume p ≡ ps(β, δ, i) < ps(β
′, δ′, i′) ≡ p′. Since v < βδ,

p > p by Lemma 4, while p̄ > β ′δ′ implies p′ < p̄ by Lemma 6. Since Γ is continuous

and increasing by Assumption 1, there exists an ε < min{βδ − v, p̄− βδ} such that if both

v1 ∈ (v, βδ) and v2 ∈ (βδ, p̄) lie within an ε-ball of βδ, 1 < Γ(v2)/Γ(v1) < p′/p. Our proof

establishes that there cannot be buyers for all the trees sold by sellers with continuation

value v2.

First fix p1 such that there exists a (β1, δ1, i1) with β1δ1 = v1, ps(β1, δ1, i1) = p1, and

∆(p1) ≥ Γ(v1). Such a price must exist since all investors with continuation value v1 at-

tempt to sell their trees at a different price than trees held by any investor with a different

continuation value; and the average dividend of those trees is Γ(v1). Since β1δ1 = v1 ∈ (v, βδ),

p1 ∈ (p, p) by Lemma 4.

Similarly, fix p2 such that there exists a (β2, δ2, i2) with β2δ2 = v2, ps(β2, δ2, i2) = p2, and

∆(p2) ≤ Γ(v2). The logic of why such a price exists is symmetric. Since β2δ2 = v2 ∈ (β ′δ′, p̄),

p2 ∈ (p′, p̄) by Lemmas 4 and 6.

Finally, part 4 of the definition of equilibrium implies that there must be some (β̃, δ̃, ĩ)

with pb(β̃, δ̃, ĩ) = p2. But

∆(p2)

p2
≤ Γ(v2)

p′
<

Γ(v1)

p
≤ ∆(p1)

p1
.

The first inequality uses ∆(p2) ≤ Γ(v2) and p2 > p′. The second uses Γ(v2)/Γ(v1) < p′/p.

The third uses Γ(v1) ≤ ∆(p1) and p1 ≤ p. Lemma 1 implies Θ(p1) < Θ(p2) < 1 and so if

β̃ > 0,

min{Θ(p2)
−1, 1}

(

β̃∆(p2)

p2
− 1

)

< min{Θ(p1)
−1, 1}

(

β̃∆(p1)

p1
− 1

)

,
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which contradicts pb(β̃, δ̃, ĩ) = p2. If β̃ = 0,

min{Θ(p2)
−1, 1}

(

β̃∆(p2)

p2
− 1

)

< 0 = min{Θ(p̃)−1, 1}
(

β̃∆(p̃)

p̃
− 1

)

for any p̃ < p by Lemma 1, again contradicting pb(β̃, δ̃, ĩ) = p2. �

Lemma 7 does not claim that investors with the lowest continuation value v have a

unique optimal sale price. Indeed, this is not generally true and is the source of our multiple

equilibria.

5.4 A Continuum of Equilibria

We now establish our main theoretical result, that there is a continuum of equilibrium payoffs

whenever the worst tree held by an investor with the lowest continuation value is worse than

the average tree held by such an investor, δ < γ. If the two are equal, then the equilibrium

is unique.

Proposition 3 Impose Assumption 1. Fix β̂ ∈ B. Define

θ̂ ≡
∫

D

∫∞

β̂
g(β, δ) dβ dδ

∫ p̄

v
β̂Γ(v) exp

(

−
∫ v

v
β̂Γ′(v′)

β̂Γ(v′)−v′
dv′
)

h(v)dv
, (7)

where h(v) ≡
∫

D

1
δ
g(v/δ, δ) dδ is the density of continuation values. If 1 ≥ θ̂ ≥ β̂δ−v

β̂γ−v
, then

there exists an equilibrium characterized by three thresholds p ≤ p̂ < p̄ satisfying:

• p ≡ θ̂β̂γ + (1− θ̂)v

• p̂ ≡ β̂γ

• p̄ is the smallest solution to p̄ = β̂Γ(p̄)

In any such equilibrium,

• Any investor with βδ = v is indifferent about selling his tree at any price p ∈
[

p, p̂
]

.

At these prices, the sale probability is Θ(p) = θ̂(p̂− v)/(p− v).

• Any investor with βδ = v ∈ (v, p̄) sells his tree at the price P (v) = β̂Γ(v). In equilib-

rium he sells with probability

Θ(P (v)) = θ̂ exp

(

−
∫ v

v

β̂Γ′(v′)

β̂Γ(v′)− v′
dv′

)

.
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• Any investor with βδ = v ≥ p̄ is indifferent about selling his tree at any price p ≥ v.

In equilibrium he sells with probability Θ(p) = 0, except possibly Θ(p̄) > 0.

• Any investor with β > β̂ is indifferent about buying trees at any price p ∈ [p̂, p̄). Any

investor with β < β̂ buys with probability 0 at a price p < p.

Conversely, any equilibrium with p̄ > p must satisfy each of these conditions.

Proof. To construct an equilibrium, we must first define the selling prices for all investors.

Assume ps(β, δ, i) = P (βδ) where P (v) ≡ max{v, β̂Γ(v)}. It is straightforward to verify that

these sale prices are weakly optimal for all sellers given the function Θ(p). Note in particular

that the expression for Θ(P (v)) is obtained from equation (6), first using V (p′) = v when

p′ ∈ [p, p̂], then using integration by substitution with p′ = P (v′) when p′ ∈ (p̂, p̄).

Turn next to the belief function ∆(p) and buyers’ behavior. The third equilibrium con-

dition implies ∆(P (v)) = Γ(v) for all v ∈ [v, p̄], and so all prices p ∈ [p, p̄] have the same

price-dividend ratio, p/∆(p) = β̂. At lower prices, ∆(p) = δ is consistent with the third

equilibrium condition. Since θ̂ ≥ (β̂δ − v)/(β̂γ − v), the price dividend ratio is lower when

p ∈ [p, p̂), p/δ ≤ β̂, and so buying at prices in this interval is not optimal. At still lower

prices, Θ(p) = ∞ and so buying at these prices is not feasible. On the other hand, at higher

prices p > p̄ that someone charges, the price-dividend ratio exceeds β̂ by construction. And

at higher prices that no one charges, assume ∆(p) = Γ(p̄) and so the price-dividend ratio is

again higher than β̂.

The final equilibrium condition is the fruit market clearing condition, which we can write

as
∫

D

∫ ∞

β̂

g(β, δ) dβ dδ =

∫ p̂

v

P (v)Θ(P (v))h(v)dv.

The functional forms allow us to solve this for θ̂, so equation (7) implies that the fruit market

clears. By allocating the fruit of investors with β > β̂ appropriately across markets, we can

then get all other markets to clear at the appropriate buyer-seller ratio. This proves that

the conditions in the Lemma characterize an equilibrium.

The proof that an equilibrium must satisfy these conditions follows from the preceding

lemmas. Lemmas 4, 6 and 7 imply that every investor (β, δ, i) with βδ ∈ (v, p̄) has a

unique optimal sale price ps(β, δ, i) ∈ (p, p̄), continuously increasing in βδ. Lemma 1 implies

that Θ(ps(β, δ, i)) < 1. Hence, optimal buying decisions require that, for some investor

to be willing to purchase all these goods, Γ(βδ)/ps(β, δ, i) is same for all such (β, δ, i), say

ps(β, δ, i) = β̂Γ(βδ) for some β̂. In particular, optimal buying decisions imply that any

investor (β ′, δ′, i′) with β ′ > β̂ is willing to purchase any of these goods, while if β ′ < β̂, the
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investor prefers to consume her fruit in the first period.

Lemma 4 implies that any investor with continuation value v must choose a lower sale

price than any investor with a higher continuation value, but Lemma 7 does not imply

that the choice is unique. We therefore let [p, p̂] denote the range of optimal sale prices for

investors with the lowest continuation value. It follows that p̂ = β̂γ, while investors with

higher continuation values set higher prices.

We turn next to the buyer-seller ratio. By the construction of p̂, only sellers with βδ = v

find it optimal to sell at any price p ∈ (p, p̂]. Hence, Lemma 5 implies that for any p in

this range, Θ(p) = (p − v)/(p − v). For p ∈ (p̂, p̄), there is a unique continuation value

V (p) = Γ−1(p/β̂) that finds this price optimal. Again, Lemma 5 determines the functional

form for Θ over this range.

Finally, we pin down the thresholds. First, since a seller with βδ = p̄ finds p̄ optimal by

Lemma 6, p̄ = β̂Γ(p̄). Second, we have already proved that p̂ = β̂γ. The seller with the

lowest continuation value may set a price weakly lower than this, p ≤ p̂. Since her dividend

is at least equal to δ, buyers’ optimality implies p ≥ β̂δ as well. �

An immediate implication of this Lemma is that if γ = δ, β̂ is uniquely determined in

equilibrium by the requirement that θ̂ = 1. This then pins down equilibrium trading patterns

for each type of investor. On the other hand, if γ > δ, a range of different β̂ are consistent

with equilibrium. In equilibria in which β̂ is larger, every investor sets a higher sale price

(except those who sell with zero probability) and some investors stop buying trees. This has

a real consequences for equilibrium payoffs.

If δ = 0, v = 0 as well and so one equilibrium has θ̂ = 0 and β̂ equal to the population

maximum.7 There is no trade. On the other hand, so long as γ > 0, there exists an

equilibrium with 0 < p ≤ p̂ < p̄ and Θ(p) ∈ (0, 1) for all p ∈ (p, p̄). If δ < γ, there is a

continuum of such equilibria.

Figure 3 illustrates investors’ behavior in one particular equilibrium. Qualitatively, the

equilibrium looks similar to the one price equilibrium depicted in Figure 2. In particular,

investors are divided into four groups. Patient investors with a high quality tree buy other

trees. Impatient investors with a low quality tree sell their tree. There are also patient

investors with a low quality tree who sell their tree and buy other trees; and somewhat

impatient investors with a high quality tree who neither buy nor sell trees but simply eat

their fruit.

Despite these superficial similarities, the one price equilibrium is quite different than our

7There is a technical issue with our notation in this case, since p = 0 < p̄ but Θ(p) = 0 for all p > 0.
Lemma 1 would define p̄ = 0 as well. Nevertheless, this is a valid equilibrium.
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Figure 3: Behavior in partial pooling equilibrium.

equilibrium. In our equilibrium, many investors attempt to sell their tree but do not succeed.

Indeed, investors with a continuation value v below p̄ choose to hold out for a high price

β̂Γ(v) > v and sell with a low probability, when they could attempt to sell at a lower price

that still exceeds their continuation value and have a higher probability of success.

Another important difference is that generically there are a finite number of one price

equilibria. In contrast, our model has multiple equilibria if δ < γ. We turn next to a worked

out example to illustrate the nature of our multiple equilibria.

5.5 An Example

Assume G(β, δ) = βδ2 so v = 0 and Γ(v) = 1+v
2
. In this case, p ∈ [0, 1

2
β̂], p̂ = 1

2
β̂, and

p̄ = β̂/(2− β̂). We can solve explicitly for the buyer-seller ratio:

Θ(p) =































∞ if p ∈ [0, p)

p/p if p ∈
(

p, p̂
)

(p/p̂)
(

2β̂−2(β̂ − (2− β̂)p)
)

β̂

2−β̂ if p ∈ [p̂, p̄)

0 if p ∈ [p̄,∞),
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Figure 4: This illustrates three different equilibrium buyer-seller ratios with G(β, δ) = βδ2.
The red line corresponds to the case of p = p̂ = 0.3720, which implies β̂ = 0.7441. The blue

line has p = 0.2, which implies β̂ = 0.8483. The green line has p = 0.05 and so β̂ = 0.9592.
The dashed lines indicate the value of p̂ in each equilibrium.

where we take advantage of the closed form to solve the integral explicitly. The market

clearing condition then implies, after a mess of algebra, that

1− β̂ = p
β̂(12− 7β̂)

12− 7β̂ + β̂2
.

It is easy to show that β̂ falls monotonically from 1 when p = θ̂ = 0 to 0.7441 when

p = p̂ = 0.3720 and θ̂ = 1. Any value of θ̂ (or p) in this range corresponds to an equilibrium.

A curious feature of these equilibria is that the probability of selling is higher at high

prices but lower at low prices in “less liquid” equilibria with lower θ. Indeed, the trading

probability at the lower bound p̂ = 1
2
β̂ is unambiguously lower with β̂ is larger (since p is

lower), while the upper bound β̂

2−β̂
is unambiguously increasing and so the trading probability

rises at those prices. We illustrate this in Figure 4 by indicating the function Θ(p) in three

different equilibria, all consistent with the parameterization G(β, δ) = βδ2.

It is worth stressing that for any value of p consistent with equilibrium, we can construct

an equilibrium in which some seller offers each price p ∈ [p, 1]. Since βδ ∈ [0, 1] in this

example, higher prices are never paid and so are uninteresting, while lower prices never

attract any sellers are so beliefs are necessarily arbitrary.
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To prove this, first assume that any seller (β, δ, i) with βδ > p̄ sets a price ps(β, δ, i) = βδ,

which is weakly optimal. Second, Proposition 3 implies that any price p ∈ (p̂, p̄] is offered by

a seller with continuation value Γ−1(p/β̂). Third, assume ps(0, p/β̂, 0) = p for all p ∈ (p, p̂).

This seller finds that price weakly optimal; and if he alone offers the price, a buyer with

β > β̂ is willing to purchase at that price. Finally, assume that ps(β, δ, i) = p̂ for all other

sellers (β, δ, i) with βδ = 0. This is an equilibrium.8

5.6 A Detail

The proposition does not determine Θ(p̄). Under a slight additional restriction, we can prove

that Θ(p̄) = 0:

Lemma 8 Impose Assumption 1 and assume p̄ > p. Assume that for all v̄, there exists a

γ > 0 such that for all v < v̄, Γ(v) ≤ Γ(v̄) + γ(v − v̄). Then in any equilibrium, Θ(p̄) = 0.

Proof. For p ∈ (p, p̄), we have

− log(Θ(p)) =

∫ p

p

1

p′ − Γ−1(p′/β̂)
dp′

with p′ > Γ−1(p′/β̂) for p′ ∈ (p, p̄) and p̄ = Γ−1(p̄/β̂). We are interested in proving that the

right hand side converges to infinity when p converges to p̄. Now fix γ ∈ (0, 1/β̂) such that

for all v < p̄, Γ(v) ≤ Γ(p̄) + γ(v − p̄). Equivalently, let p′ = β̂Γ(v) and note that p̄ = β̂Γ(p̄).

Then for all p′ ∈ (p, p̄), Γ−1(p′/β̂) ≥ p̄+ (p′ − p̄)/(β̂γ). In particular,

∫ p̄

p

1

p′ − Γ−1(p′/β̂)
dp′ ≥ β̂γ

1− β̂γ

∫ p̄

p

1

p̄− p′
dp′.

Since we fixed γ ∈ (0, 1/β̂), β̂γ

1−β̂γ
> 0, while the integral is infinite. The original integral is

therefore unbounded as well, proving the result. �

It is possible to construct an example showing that strict monotonicity of Γ is not suf-

ficient for this result. The key is to construct an example in which Γ′(p̄) = 0. Assume

Γ(v) = 1
3

(

1+2
√

v(1− v)
)

for v ∈ [0, 1/2] and Γ(v) = 1− 4
3
v(1− v) for v ∈ (1/2, 1]. Also as-

sume that β̂ = 3/4. All of this could be made precise through some careful choice of G(β, δ).

8This equilibrium assumed that almost all of the sellers with βδ = v set price p̂. We can also construct
an equilibrium in which many of them do, say ps(0, p/β̂, i) = p for all p ∈ (p, p̂) and ps(β, δ, i) = p for all
others with βδ = 0. This raises ∆(p̂), the quality of the assets for sale at p. But by setting Θ(p) = ∞, we

can ensure that this only attracts buyers with a discount factor below β̂.

25



Then it is possible to show that p = β̂Γ(0) = 1/4 and p̄ = β̂Γ(p̄) = 1/2. Some simple

algebra gives Γ−1(p) = 1
2

(

1 −
√

3p(2− 3p)
)

for p ∈ [1/3, 2/3] and Γ−1(p) = 1
2

(

1 +
√
3p− 2

)

for p ∈ (2/3, 1]. Now solve the integral

∫ p̄

p

1

p′ − Γ−1(p′/β̂)
dp′ =

1

5
(π + log 8),

so limpրp̄Θ(p) ≈ 0.352. In this case, it appears that any value of Θ(p̄) below this limit is

consistent with equilibrium, 0 ≤ Θ(p̄) ≤ exp(−(π + log 8)/5).

6 Buyers’ Strikes

One application of the model is to think about whether a movement from one equilibrium to

another can be understood as a crisis. We think that an equilibrium with a higher value of

β̂ and hence lower value of θ̂ can be understood as a buyers’ strike. As Proposition 3 makes

explicit, when β̂ is higher, fewer investors use their fruit to buy trees. Since the fruit market

clears, it follows that the total value of the trees that are sold is lower when β̂ is higher. In

addition, every seller sets a higher price for his tree. While it is not true that every seller

is less likely to sell his tree, it is the case that sellers with low continuation values are less

likely to sell and sellers with high continuation values are more likely to sell. Therefore, the

composition of trees sold shifts towards more expensive trees as well. Both forces imply that

fewer trees are sold when β̂ is higher.

From the perspective of an investor in this environment, nothing extrinsic to the envi-

ronment has changed. However, some investors stop buying assets because they believe that

they will get worse assets at any given price. The reduction in demand shifts the incentive

of sellers. In particular, since the marginal buyer values assets more, prices are higher. But

to discourage sellers with low continuation values from misrepresenting the quality of their

assets, liquidity falls at many prices, and so the shift in beliefs has set off a buyers’ strike.
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