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Abstract

We study how a government should optimally disclose information about banks’ assets during a financial

crisis. The government can also use its resources to stop runs and unfreeze credit markets. Disclosure improves

welfare by reducing adverse selection, but it can also create runs on weak banks. A credible fiscal backstop

mitigates these risks and allows the government to pursue efficient but risky strategies. A strong fiscal position

makes it possible to provide a candid assessment of financial health while providing guarantees to banks that

are run on. A weak fiscal position can make it optimal not to reveal too much information. We argue that our

theory provides an explanation for the different choices that countries make in response to financial crises.
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Government interventions play an important role in stopping financial panics and alleviating the effects of

financial crises (Gorton (2012)). The global financial crisis was no exception to this historical norm. Governments

use various tools to intervene during crises, but different government use different tools and with varying degrees

of success. Our goal is to model the tradeoffs faced by governments in desiging interventions and to shed light on

how these tradeoffs shape policy and condition its effectiveness.

In October 2008, the US government decided to inject capital into banks under the Troubled Asset Relief

Program. In May 2009, the Federal Reserve publicly reported the results of the Supervisory Capital Assessment

Program (SCAP). The SCAP was an assessment of the capital adequacy, under adverse scenarios, of a large subset

of US financial firms. The exercise is broadly perceived as having reduced uncertainty about the state of the US

financial system and helped restore calm to financial markets.

The Committee of European Banking Supervisors (CEBS) also conducted EU-wide stress tests from May to

October 2009 but announced that it would not disclose the results. The exercise was repeated a year later and

the results were published, but the scope of the test was limited, especially with regard to sovereign exposures.

European stress tests were less effective than their US counterparts in restoring confidence to the financial sector.1

What explains the differences in the design and effectiveness of these stress tests? We propose a model that

highlights the trade-offs faced by a regulator in deciding how much information about the financial system to make

public, and we emphasize the role of fiscal capacity in shaping policy decisions.

We study optimal interventions by a planner in an economy that features adverse selection in the spirit of

Akerlof (1970) and Stiglitz and Weiss (1981) as well as bank runs as in Diamond and Dybvig (1983). Our economy

is populated by financial intermediaries that differ in the quality of their existing assets.2 The quality of these

legacy assets is private information of each bank. In order to invest in new projects with positive net present value,

banks must raise additional funds from the credit market. Asymmetric information about the quality of existing

assets creates the potential for adverse selection in the credit market, leading to inefficiently high interest rates

and low investment in the decentralized equilibrium. In addition, if short term creditors (depositors) learn that a

particular bank is bad, they might decide to run. Runs are inefficient for two reasons: there is a cost to liquidating

assets, and liquidated banks cannot invest in new projects. Runs and adverse selection imply that the decentralized

equilibrium in our economy is not necessarily constrained-efficient.

In this environment, a policy maker has two potentially welfare-improving tools at its disposal: information

disclosure, and the ability to raise taxes. We first consider the case of pure disclosure without any fiscal intervention.

Disclosing information mitigates adverse selection but might trigger runs on weaker banks. We find that the

planner’s disclosure problem is typically non-convex, so that it is often optimal to have either very little or a lot of

disclosure.
1Ong and Pazarbasioglu (2013) provide a thorough overview of the details and perceived success of SCAP and the CEBS stress tests.
2We have in mind all short term runnable liabilities: MMF, Repo, ABCP, and, of course, large uninsured deposits. In the model,

for simplicity, we refer to intermediaries as banks and to liabilities as deposits.
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We then study fiscal interventions, which are costly because they expose the balance sheet of the government

to financial risks. The planner in our model must pay for its interventions with distortionary taxation, so it seeks

to minimize the costs of its interventions. The planner provides deposit guarantees to stop bank runs. For the

credit market intervention, we solve a mechanism design problem similar to the one in Tirole (2012) and Philippon

and Skreta (2012). The optimal intervention takes the form of a debt guarantee. When markets are frozen, the

government provides a credit-enhancing guarantee to banks who need to borrow. The two interventions draw on

the same fiscal capacity, so when the government has to make a large deposit guarantee, it has fewer resources

available to unfreeze the credit market.

Finally, we study how fiscal capacity shapes optimal disclosure. Our main result is that a planner’s fiscal

capacity is a key determinant of the optimal disclosure policy. Our key insight is that fiscal capacity provides

insurance against the adverse effects of information disclosure. When fiscal capacity is high, it is optimal for the

planner to reveal information and provide deposit guarantees to at least a subset of banks that are vulnerable to

runs, so that these banks survive and are able to invest in profitable projects. When capacity is low, the planner

prefers to avoid runs by not disclosing much information, and mitigate the resulting adverse selection in the credit

market by providing credit guarantees. We then extend our analysis and allow for a “disaster scenario” in which

system-wide runs are possible (every bank suffers a run). We study the impact o changes in the probability of this

scenario and find that while our main result is robust for the baseline calibration, it can be reversed if the cost of a

run on good banks is high enough: in this situation, for a high enough probability of a system-wide run, a planner

with no fiscal capacity prefers to ensure that at least some good banks survive by fully disclosing the types of all

banks, whereas a planner with some fiscal capacity can afford to disclose less information.

Our paper is organized as follows. Section 1 presents the model, and the decentralized equilibrium with no

intervention. Section 2 focuses on the role of information disclosure by a benevolent planner. Section 3 discusses

fiscal interventions. Section 4 combines information disclosure and fiscal interventions, and studies the optimal

combination of the two types of policies. Section 5 concludes.

Related literature

We make two contributions relative to the literature. First, we model new lending and borrowing by banks in

addition to bank runs. While existing papers capture some important aspects of information disclosure, they do

not address what seems to be the main trade-off facing policy makers, between unfreezing credit markets and

triggering bank runs.

Our second, and most important, contribution is to analyze the role of fiscal capacity in shaping information

disclosure. Our model captures the idea that fiscal capacity is like an insurance policy that allows regulators to

be more aggressive in their disclosure choices. Our model therefore provides an explanation for the difference in

disclosure choices between Europe and the United States. Banking regulators in the US have a fiscal backstop
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and hence are more willing to run tougher stress tests. Banking regulators in Europe do not have a common

fiscal backstop (or at least, did not have one during the financial crisis), and so are less willing to expose potential

weaknesses in their banking system.

Our work builds on the rich literature that studies asymmetric information, following Akerlof (1970), Spence

(1974), and Stiglitz and Weiss (1981). If no information is revealed by the planner, our economy resembles the

one studied by Philippon and Skreta (2012) and Tirole (2012). The optimal policy to mitigate adverse selection

is similar to theirs. Since we add bank runs to an economy with asymmetric information, we also build on the

large literature started by Diamond and Dybvig (1983). Several recent papers shed light on how runs take place

in modern financial systems: theoretical contributions include Uhlig (2010) and He and Xiong (2012); Gorton and

Metrick (2012) provide a detailed institutional and empirical characterization of modern runs.

Several recent papers study specifically the trade-offs involved in revealing information about banks. Goldstein

and Leitner (2013) focus on the Hirshleifer (1971) effect: revealing too much information destroys risk-sharing

opportunities between risk neutral investors and (effectively) risk averse bankers. These risk-sharing arrangements

also play an important role in Allen and Gale (2000). Shapiro and Skeie (2013) study reputation concerns by a

regulator in an environment characterized by a trade-off between moral hazard and runs.

Another set of papers study disclosure in models of bank runs. In this class of models, disclosure is a way to

break pooling equilibria. Whether disclosure is good or bad then depends on whether the pooling equilibrium is

desirable: if agents pool on the “no run” equilibrium then there is no reason to disclose information. This is more

likely to happen in good times as Carlsson and van Damme (1993) and Morris and Shin (2000) show. On the other

hand, in bad times, agents might run on all the banks, in which case it is better to disclose information to save at

least the good banks. This is the basic result of Bouvard et al. (2012), who also consider ex-ante disclosure rules

that allow pooling across macroeconomic states. Parlatore (2013) studies an economy with aggregate risk where

more precise information about realizations of the aggregate state can lead to more bank runs.

In our setting, banks are not able to credibly disclose information about their type. Alvarez and Barlevy (2014)

show, in a model with contagion of losses across banks and where moral hazard limits efficient investment, that even

if banks have access to a costly technology that allows them to perfectly disclose their type, mandatory disclosure

might be welfare improving. Gorton and Ordoñez (2014) consider a model where crises occur when investors have

an incentive to learn about the true value of otherwise opaque assets.

Our paper also relates to the theoretical literature on bank bailouts. Gorton and Huang (2004) argue that the

government can bail out banks in distress because it can provide liquidity more effectively than private investors.

Diamond and Rajan (2005) show that bank bailouts can backfire by increasing the demand for liquidity and

causing further insolvency. Diamond (2001) emphasizes that governments should only bail out the banks that have

specialized knowledge about their borrowers. Farhi and Tirole (2012) examine bailouts in a setting in which private

leverage choices exhibit strategic complementarities due to the monetary policy reaction. Corbett and Mitchell
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(2000) discuss the importance of reputation in a setting where a bank’s decision to participate in a government

intervention is a signal about asset values, and Philippon and Skreta (2012) formally analyze optimal interventions

when outside options are endogenous and information-sensitive. Mitchell (2001) analyzes interventions when there

is both hidden action and hidden information. Landier and Ueda (2009) provide an overview of policy options for

bank restructuring. Philippon and Schnabl (2013) focus on debt overhang in the financial sector. Diamond and

Rajan (2012) study the interaction of debt overhang with trading and liquidity. In their model, the reluctance to

sell assets leads to a collapse in trading which increases the risks of a liquidity crisis.

Goldstein and Sapra (2014) review the literature on the disclosure of stress tests results. They explain that

stress tests differ from usual bank examinations in four ways: (i) traditional exams are backward looking, while

stress tests project future losses; (ii) the projections under adverse scenarios provide information about tail risks;

(iii) stress tests use common standards and assumptions, making the results more comparable across banks; (iv)

unlike traditional exams that are kept confidential, stress tests results are publicly disclosed. They list two benefits

of disclosure: (i) enhanced market discipline; and (ii) enhanced supervisory discipline. Our model is based on yet

another benefit: the unfreezing of the credit market. They list four costs of disclosure: (i) disclosure might prevent

risk-sharing through the Hirshleifer (1971) effect, which is the focus of Goldstein and Leitner (2013); (ii) improving

market discipline is not necessarily good for ex-ante incentives; (iii) disclosure might trigger runs; (iv) disclosure

might reduce the ability of regulators to learn from market prices, as in Bond et al. (2010). Our model is based on

cost (iii).

1 Model

1.1 Technology, preferences, and information

There are three dates, t = 0, 1, 2, and one good (consumption) at every period. The economy is populated by a

continuum of households, a continuum of mass 1 of financial intermediaries (banks), and a government. Figure 1

summarizes the timing of decisions and events in the model, which are explained in detail below.

Households are risk-neutral and their utility depends only on consumption at t = 2. They receive an endowment

ȳ1 at t = 1. At periods 0 and 1 they have access to a storage technology that pays one unit of consumption at

t = 2 per unit invested. There is no discounting. This allows us to treat total output at t = 2 (which equals total

consumption) as the measure of welfare that the government seeks to maximize.

Banks are indexed by i ∈ [0, 1] and may be of either good (g) or bad (b) type. A fraction θ of banks are of

type g. Banks have pre-existing long-term assets and short-term liabilities. Legacy assets determine the quality of

the bank. They deliver a payoff a = Ai for i ∈ {g, b} at t = 2. We refer to short-term liabilities as deposits for

simplicity, but they are also meant to include money market funds, repo, etc. The short-term demand liabilities

entitle a depositor to 1 at any time, and D > 1 at t = 2. Demand deposits are senior to any other claims on the
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Figure 1: Model Timing

◦ Government announces
disclosure policy

◦ Aggregate state is realized
and private signals are
observed

◦ Households may run on
banks and Government
may intervene to prevent
liquidation

t = 0

◦ Credit markets open

◦ Surviving banks borrow in
credit markets and invest

◦ Government may
intervene in credit market

t = 1

◦ Payoffs are realized

◦ Government levies taxes

t = 2

bank, and may be withdrawn at any time. This induces a maturity mismatch problem, and makes banks vulnerable

to runs. Banks have access to a liquidation technology that yields δ ∈ [0, 1] units of the consumption good per

unit of asset liquidated. The liquidation value of assets is δAi for i ∈ {g, b}. In the event of a run, banks use this

liquidation technology to meet depositors’ demand for funds. 3

At t = 1, banks receive investment opportunities that cost a fixed amount k and deliver a random payoff v at

t = 2. For simplicity, we assume that payoffs are binary: v = V with probability q and 0 with probability 1 − q,

and do not depend on the bank type.4 We impose the following ordering:

Assumption 1: Good banks are fundamentally safe, while bad banks are fundamentally risky.

Ag −
k

q
> D > Ab > 0,

This assumption implies that the existing debt of bad banks is risky: if bad banks do not invest, or if they invest

and the project fails, they are unable to repay their senior debt. On the other hand, the legacy assets of good banks

are large enough to cover all potential liabilities, including liabilities issued at t = 1 to finance new investments,

even if investors are pessimistic about the quality of the pool of borrowers (in which case, as we will shortly discuss,

the interest rate would be 1/q).

At t = 0, the government chooses and announces its disclosure policy before it observes the aggregate state. The

aggregate state θ, the fraction of good banks, is then realized and banks learn their types privately. The aggregate

state follows some distribution θ ∼ π (θ) with support
[

θ, θ̄
]

. All agents observe this aggregate state, as well as a

binary public signal si ∈ {0, 1} with precision p ≥ 0.5 for each bank i. Signal precision is symmetric:

p ≡ Pr (si = 1 | i = g) = Pr (si = 0 | i = b)

3We can interpret δ as the equilibrium outcome of a fire-sales process that can potentially depend on the magnitude of the fire sale,
or the quantity of the asset that is liquidated/number of institutions that liquidate.

4See Philippon and Skreta (2012) for a discussion of the general case.
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When we introduce optimal information disclosure in Section 2, the precision of the signal p will be chosen by

the government as its disclosure policy. For the remainder of this section, we take the precision of the signal p

as exogenous, and describe the equilibrium absent government intervention. We assume throughout that banks

themselves are not able to credibly disclose any information about the quality of their assets. In our environment

this will be the case if, for example, information disclosed by banks is unverifiable by outsiders or if disclosure is

sufficiently costly5. Given the complexity of bank balance sheets, the patent failure of rating agencies and audit

firms to inform the public about the state of bank balance sheets leading up to and during the financial crisis, and

the reportedly large costs of complying with the post-crisis reporting environment6, these assumptions are probably

not farfetched.

Given the realization of the aggregate state and the signal for each bank, agents form posterior probabilities of

each bank being good. Conditional on the realization of si = s, we define the posteriors as:

zs (θ, p) ≡ Pr (g | s, θ)

Since the signal is binary, and there is a common prior, banks are divided among those that received good (si = 1)

and bad (si = 0) signals. Bayes’ law then implies that

z0 (θ, p) =
(1− p) θ

(1− p) θ + p (1− θ)

z1 (θ, p) =
pθ

pθ + (1− p) (1− θ)

Note that these posterior probabilities depend both on the precision of the signal p and the realization of the

aggregate state θ. Based on this information, depositors might decide to run on banks or not. If a bank is run, it

must liquidate its assets to satisfy its depositors. If a bank survives, it receives an investment opportunity at period

1.

1.2 Bank runs

Depositors can withdraw their deposits from banks at any time. If this happens before t = 2, banks have to liquidate

assets. The liquidation technology is inefficient: it yields δ ∈ [0, 1] per unit of asset liquidated. To simplify the

analysis, we assume that banks that make use of this technology lose the investment opportunity at t = 1.

We do not explicitly model households with liquidity shocks that motivate the existence of deposit contracts

5In their survey of the literature on the corporate information environment, Beyer, Cohen, Lys, and Walther (Beyer et al.) review
five conditions that underpin the “unraveling result” (all private information is disclosed because agents with favorable information
want to avoid being pooled with inferior types) established by Grossman (1981) and Milgrom (1981): (1) disclosure is costless to the
firm; (2) investors know that the firm has private information; (3) all investors interpret the firm’s disclosure in the same way and the
firm knows how investors will interpret the firm’s disclosure; (4) the firm can credibly disclose its private information; and (5) the firm
cannot commit ex-ante to a certain disclosure policy.

6For example, Success in Fed stress tests comes with a cost (http://www.risk.net/risk-magazine/feature/2357474/success-in-fed-
stress-tests-comes-with-a-cost).
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in the first place. We do not address the question of when a planner, assuming that it could, would choose to

suspend convertibility. This is a well studied issue and the trade-offs are well understood (see Gorton (1985), for

example). When liquidity demand is random, suspending convertibility is socially costly. We assume that these

costs are large enough that the government prefers to guarantee deposits. Note also that “deposits” in the model

include short-term wholesale funding, whose suspension would be difficult to implement in any case.

We denote by λ the fraction of assets that is liquidated and by x the fraction of depositors in a given bank

that run. If a fraction λ of a bank’s assets are liquidated, the cash flows are δλAi at the time of liquidation, and

(1 − λ)Ai at t = 2. The bank can satisfy its customers if δλAi ≥ x. We assume that, under a full run, good banks

are safe and bad banks are not.

Assumption 2: Good banks are liquid, while bad banks are not

δAg > 1, δAb < 1

Consider the decision problem of a depositor in a bank that is known to be good. Withdrawing early yields 1 with

certainty even if every other depositor runs. Waiting yields the minimum of the promised payment D and a pro-rata

share of the residual value of the bank:

min

(

D,
(1− λ)Ag

1− x

)

When a full run occurs, x = 1 and λ = 1
δAg < 1, so the above expression is always equal to D. The implication is

that even if every other depositor runs, a depositor prefers to wait because D > 1, so the unique equilibrium for a

bank known to be good is no run, x = 0 and λ = 0.

For bad banks, we have that δAb < 1, and so λ = 1 when x = 1. That is, the bank has no assets left to

repay depositors who decide to wait in case of a full run. This means that a full run is an equilibrium. Since the

type of a bank is private information, the run decision is a function of the (posterior) belief about the quality of a

bank. Clearly, if z = 1, no run is the only equilibrium. It is possible to derive a threshold posterior belief zR above

which no run is the unique equilibrium. This threshold must be such that depositors with this belief are indifferent

between running and waiting if all other depositors run. This indifference condition is given by

z + (1− z) δAb = zD

Rearranging yields

zR ≡
δAb

D + δAb − 1
(1)

For beliefs in the set
[

0, zR
]

multiple equilibria exist. For simplicity, we select the run equilibrium for any bank

whose posterior belief falls in the multiple equilibrium region. What matters for our results is that a run is possible
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in that range, not that it is certain. We summarize our results in the following lemma.

Lemma 1. Depositors run on any bank whose perceived quality falls below zR.

Proof. See above.

1.3 Credit market and investment in period 1

Banks receive investment opportunities at time 1. We assume that these investments have positive net present

value, and that households’ endowment ȳ1 is enough to sustain full investment.

Assumption 3: Investment projects have a positive net present value, and households have enough resources to

sustain investment by all banks

E[v] = qV > k and ȳ1 > k

Banks must raise k externally in order to be able to invest. The important point is that lenders care about the

quality of legacy assets. There are several ways to motivate this. For simplicity, we follow Philippon and Skreta

(2012) in assuming that only total income at period 2, y = a+ v is contractible.7 Under standard assumptions, we

have the following standard result in optimal contracting:

Lemma 2. Debt is an optimal contract to finance investment at time 1.

Proof. See Nachman and Noe (1994) and Philippon and Skreta (2012).

Let j = 0, 1 be an indicator denoting the investment decision, and let r denote the (gross) interest rate on new

loans. The respective payoffs of depositors, new lenders, and equity holders are:

yD = min(a+ v · j,D)

yl = min(a+ v · j, rk · j)

ye = a+ v · j − yl − yD

Note that these payoffs capture the idea that deposits are senior, and that equity is the residual claim.

Adverse selection arises from the fact that banks know their own type, and therefore the payoffs of their legacy

assets a, while lenders do not. Lenders have a belief about the type of a bank, given by z, defined above. This belief

pins down the interest rate they will charge. Under Assumption 1, the debt issued by good banks is safe even at

the highest possible interest rate. Good banks know that they always pay back their debts, and so the fair interest

7Tirole (2012) assumes that new projects are subject to moral hazard, so banks must pledge their existing assets as collateral. One
could also assume that bankers can repudiate their debts, engage in risk shifting, etc. All these frictions motivate the role of existing
assets as collateral for new loans and they are equivalent in our framework.
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rate would be r = 1. For a given interest rate, good banks find it profitable to borrow at rate r and invest if and

only if

Ag −D + qV − rk ≥ Ag −D

This inequality implies a maximum interest rate rg above which good banks would decide not to invest:

r ≤ rg ≡
qV

k
(2)

Bad banks earn nothing if they do not invest since their existing assets are insufficient to repay their depositors.

As a result, they always want to invest. The question is whether there is enough income to repay the new lenders.

Even in the absence of asymmetric information, underinvestment by bad banks could occur due debt overhang, as

in Philippon and Schnabl (2013). We ensure that this is not the case by imposing q ≥ k
V +Ab−D

, which guarantees

that

Ab −D + V −
k

q
≥ 0

So lenders break even by lending at rate 1/q to a bad bank.

We are interested in situations where information asymmetry induces adverse selection in the credit market.

This happens when the interest rate for bad banks, q−1, exceeds the maximum interest rate at which good types

are willing to invest: q−1 > rg , which is equivalent to imposing q ≤
√

k
V
.

Assumption 3: There is potential for adverse selection in the credit market

k

V − (D −Ab)
< q <

√

k

V

Adverse selection models often feature multiple equilibria. For instance, if lenders expect only bad banks to

invest, they set r = q−1 and indeed, at that rate, good banks would not participate. We rule this out by assuming

that, in case multiple equilibria exist, the best pooling equilibrium is selected.8 If both good and bad types invest

for a certain posterior belief z, the interest rate must satisfy the break-even condition for the lender (whose outside

option is zero net return storage)

k = zrk + (1− z) qrk,

which can be rearranged to yield

r (z) =
1

z + (1− z) q
.

Note that for good types to invest, the interest rate must satisfy equation (2). Equating good banks’ participation

8When we consider credit market interventions, this assumption is without loss of generality because the government would always
be able to costlessly implement the best pooling by setting the interest rate appropriately.
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constraint with lenders’ break-even constraint we can define a threshold posterior zI such that good banks invest if

and only if z > zI :

zI ≡
k
qV

− q

1− q
. (3)

When z < zI , only the bad types invest are tempted to invest, and the interest rate is r = 1
q .

9 We summarize the

credit market equilibrium in the following lemma.

Lemma 3. The credit market at period 1 is characterized by a cutoff zI about the perceived quality of any pool of

banks. When z > zI, both good and bad types invest, and the interest rate is r (z) = 1
z+(1−z)q . When z < zI, only

bad types invest, and the interest rate is rb = 1
q
.

Proof. See above.

1.4 Equilibrium without government interventions

We have shown that Bayesian updating of a common prior belief θ with realizations of a binary signal with precision

p results in two posterior belief categories that we denote by z0 (θ, p) and z1 (θ, p). Equilibrium is characterized

by how these posteriors compare to the thresholds zR and zI . Because banks that are run cannot invest, the case

zR ≥ zI is not interesting.10 We therefore make the following natural assumption

Assumption 4 The threshold for bank runs is strictly smaller than the threshold for full investment: zR < zI,

which requires
δAb

D + δAb − 1
≤

k
qV

− q

1− q

The equilibrium regions are depicted in Figure 2: banks with posterior belief lower than zR (the run region, R)

suffer a run; banks with posterior belief in the
[

zR, zI
]

interval are not run on, but credit markets for these banks

are affected by adverse selection (L); finally, all banks with belief greater than zI invest, since credit markets for

these banks are free from adverse selection (full investment region, I).

Since z0 (θ, p) ≤ z1 (θ, p) , ∀p, θ and zR ≤ zI , there are six possible outcomes, depending on the values of θ and

p.

1. Both categories suffer a run, z1 (θ, p) ≤ zR,(R,R);

2. Banks with the bad signal suffer a run, banks with the good signal face adverse selection, z0 (θ, p) ≤ zR ≤

z1 (θ, p) ≤ zI , (R,L);

9We assume here that depositors do not observe new borrowing decisions by banks. As a result, bad types can invest without creating
a run. We have also solved the model under the alternative assumption.

10In this case, bank runs would be so severe so as to completely “clean” the credit market from any adverse selection.
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Figure 2: Equilibrium Regions
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This figure illustrates the equilibrium thresholds: for posteriors below zR, banks suffer runs (R). For posteriors between zR and zI , the

economy faces suboptimal investment, as only bad banks invest (L). For posteriors above zI , all banks invest without facing adverse

selection in credit markets (I).

3. Banks with the bad signal suffer a run, banks with the good signal fully invest, z0 (θ, p) ≤ zR ≤ zI ≤ z1 (θ, p),

(R, I);

4. Both categories face adverse selection, zR ≤ z0 (θ, p) ≤ z1 (θ, p) ≤ zI ,(L,L);

5. Banks with the bad signal face adverse selection, banks with the good signal fully invest, zR ≤ z0 (θ, p) ≤

zI ≤ z1 (θ, p), (L, I);

6. Both categories fully invest, zR ≤ zI ≤ z0 (θ, p) ≤ z1 (θ, p), (I, I).

For a given precision of the signal p, the outcome depends on the realization of θ. Figures 3 and 4 illustrate two

possible outcomes depending on the realization of θ: if the realization of this random variable is low ( a scenario we

call “bad macro news”), not only the mass of banks with the bad signal is high, but the posterior beliefs for both

the banks with the bad and the good signal are low. If the realization is high (“good macro news”) the posteriors

will be higher and more mass will be placed on the good signal posterior.

More concisely, we can characterize the equilibrium for any pair (θ, p) using four thresholds: the minimum

(aggregate) state for which category s = {0, 1} avoids a run

θRs (p) = min
{

θ | zs (θ, p) ≥ zR
}

, for s = {0, 1} (4)

and the minimum (aggregate) state for which category s = {0, 1} experiences full investment by good banks

θIs (p) = min
{

θ | zs (θ, p) ≥ zI
}

, for s = {0, 1} (5)

The precision of the signal p defines these thresholds, against which the realization of θ is compared to determine

the equilibrium outcome. Note that the ordering of these four thresholds can change for different values of p. The
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Figure 3: Low θ (bad macro news)

This figure illustrates the position and mass of the posteriors, zs (θ, p) , ns (θ, p) for s = {0, 1}. Precision p is taken as exogenous, and

the realization of θ is low. The outcome is (R,L), with the banks that received the bad signal suffering a run, and credit markets for

banks that received the good signal feature adverse selection (leading to suboptimal investment).

Figure 4: High θ (good macro news)

This figure illustrates the position and mass of the posteriors, zs (θ, p) , ns (θ, p), respectively, for s = {0, 1}. Precision p is taken as

exogenous, and the realization of θ is high. The outcome is (L,I), with banks that received the bad signal facing suboptimal investment

(but no run), and banks that received the good signal facing full investment.
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Figure 5: Equilibrium Regions
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This figure illustrates the equilibrium regions in the (p, θ) space. The dashed lines are the investment thresholds, θIs (p) while the solid

lines are the run thresholds θRs (p). The red (lighter) lines are the thresholds for the banks with the good signal s = 1, while the blue

(darker) lines are the thresholds for the banks with the bad signal s = 0. In the equilibrium regions, the first letter corresponds to the

outcome for the banks with the bad signal, while the second letter is the outcome for the banks with the good signal.

thresholds, and the possible equilibrium regions, are depicted in Figure 5. If θ is high enough and p is low enough,

for example, both classes can feature full investment. However, for the same θ, this region shrinks as p increases, and

the signal becomes more informative for good and bad banks alike. Setting a low p, however, not only maximizes

the likelihood of the best possible outcome, (I, I), where all banks fully invest, but it also maximizes likelihood of a

full run, (R,R), if the realization of θ happens to be low enough. As precision increases, p ↑, the likelihood of both

the best and worst possible outcomes decreases, as the two posterior categories become more and more separated

(and thus the likelihood of both falling in the same region becomes lower). In particular, two new regions appear:

(R,L) and (L, I), which are the outcomes illustrated in Figures 3 and 4, respectively. If precision is high enough,

the (L,L) region disappears and gives rise to a new region, (R, I): at this stage, the signal is so informative and

the two posteriors are so far apart that banks with the low signal suffer a run and banks with the good signal fall

in the full investment category. This region eventually comes to dominate as p → 1, as the signal becomes perfectly

informative: bad banks suffer runs while good banks survive and invest.

We summarize the description of the equilibrium without government intervention in proposition4.

Proposition 4. With no government intervention, the private equilibrium is characterized by four thresholds

θRs (p) , θIs (p) for s = {0, 1} such that

1. If θ ≤ θRs (p), all banks with signal s suffer a run, R
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2. If θ ∈
[

θRs (p) , θIs (p)
]

, all banks with signal s face adverse selection in the credit market, L

3. If θ ≥ θIs (p), all banks with signal s fully invest regardless of their type, I.

The thresholds are

θR0 (p) =
pzR

pzR + (1− p) (1− zR)

θR1 (p) =
(1− p) zR

p (1− zR) + (1− p) zR

θI0 (p) =
pzI

pzI + (1− p) (1− zI)

θI1 (p) =
(1− p) zI

p (1− zI) + (1− p) zI

and satisfy the following properties

1. θRs (p) ≤ θIs (p) , ∀s ∈ {0, 1} , p ∈
[

1
2 , 1

]

2. θj1 (p) ≤ θj0 (p) , ∀j ∈ {R, I} , p ∈
[

1
2 , 1

]

3. dθj
0
(p)

dp > 0, dθj
1
(p)

dp < 0, ∀j ∈ {R, I} , p ∈
[

1
2 , 1

]

Proof. See Appendix B.

For most of the analysis, we focus on the case
[

θ, θ̄
]

=
[

zR, zI
]

, in which case only the thresholds θR0 (p) , θI1 (p)

are relevant. This is shown in Figure 6; by restricting θ ∈
[

zR, zI
]

we are eliminating the extreme regions in which

both categories fully invest and suffer a run, (I, I) and (R,R), respectively. For our chosen parametrization, a low

signal precision results in both categories falling in the adverse selection region with certainty, (L,L), while high

precision results in (R, I) with certainty. Low precision is a risk-free choice (from an ex-ante perspective), but the

same is not true for high precision: while the planner can accurately forecast that banks with a bad signal will

suffer a run, and banks with the good signal will fully invest, it is still exposed to uncertainty regarding θ that

determines the size of the run and of investment. One can then see a high p as a gamble: a high realization of θ

leads to a close to ideal outcome, with high investment and few runs, while a low realization of θ results in many

banks being run and low investment.

In the presentation of the model we abstract from the possibility that banks issue equity either voluntarily or

after being required to do so by the government. We argue that issuing equity is not an equilibrium outcome at any

stage of the model. At t = 1 there are two motives for equity issuance: to finance the new investment opportunity

or, for type b banks, to prevent default in the final period. The latter motive is absent in our model since default in

the final period is not socially costly (a feature that could easily be changed). By lemma 2, financing the investment

opportunity by issuing equity is suboptimal. At t = 0, before the realization of bank-specific signals but after banks

know their types, bad banks may wish to issue equity to reduce leverage and prevent a run if they receive the
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Figure 6: Equilibrium Regions, θ ∈
[

zR, zI
]
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This figure illustrates the equilibrium regions in the (p, θ) space, for θ ∈
[

zR, zI
]

. The dashed lines are the investment thresholds,

θIs (p) while the solid lines are the run thresholds θRs (p). The red (lighter) lines are the thresholds for the banks with the good signal

s = 1, while the blue (darker) lines are the thresholds for the banks with the bad signal s = 0. In the equilibrium regions, the first letter

corresponds to the outcome for the banks with the bad signal, while the second letter is the outcome for the banks with the good signal.

low signal. Attempting to do so would signal their type, which would lead to a run. The final possibility is that,

anticipating the possibility of runs, banks issue equity before knowing their types. This is equivalent to allowing

banks to optimize their capital structure which is outside the scope of this paper.

1.5 Welfare Function

New projects have positive net present value, bank runs entail costly asset liquidation, and taxation is distortionary.

This means that in the first-best equilibrium, every bank invests and there is no distortionary taxation. First-best

ex-ante welfare can then be written as

WFB = E [θ]Ag + (1− E [θ])Ab + ȳ1 + qV − k (6)

Because of runs and adverse selection, the laissez-faire equilibrium may fall short of the first best. The government

in our model has access to two technologies to modify the equilibrium: a disclosure technology (asset quality review)

to reveal information about a banks assets, and the ability to raise taxes at period 2 to provide deposit guarantees

or to intervene in the credit market.

The disclosure policy is characterized by a choice of p, the precision of the public signals. We assume that

the government chooses p at t = 0, before the aggregate state of the economy (the fraction of good banks θ) is

realized. The advantage of disclosure, or increasing precision, is that by providing more precise information about
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good banks, it may mitigate adverse selection in credit markets. However the government will be disclosing more

precise information regarding bad banks, making them more vulnerable to runs. This policy is described in more

detail in section 2.

Fiscal interventions are described in greater detail in section 2. To pay for the costs of honoring its guarantees

of bank liabilities, the government levies distortionary taxes at t = 2. We assume that the deadweight costs of

taxation are quadratic, and scaled by a parameter γ. Denoting by Ψ the costs of fiscal interventions, the total

welfare loss from taxation is γΨ2.

Since households are risk-neutral, aggregate welfare coincides with aggregate output net of distortionary costs.

Given the realization of the aggregate state θ, and a signal p that induce a distribution of posteriors (zs, ns) (θ, p)

for s = 0, 1, as well as government intervention with net cost Ψ, ex-post welfare can be written as

w(θ, p,Ψ) = θAg + (1− θ)Ab + ȳ1 + qV − k

−
∑

zs≤zR

ns (θ, p)
{

(1− δ) zs (θ, p)A
g + (1− δ) [1− zs (θ, p)]A

b + qV − k
}

(7)

− (qV − k)
∑

zs≤zI

zs (θ, p)ns (θ, p)− γΨ2

where ns (θ, p) is the mass of banks with signal s in state (θ, p). There are three sources of losses relative to the first

best. The first is the inefficient liquidation of assets for the banks are subject to a run, i.e., those with zs (θ, p) ≤ zR.

The second is the foregone investment due to adverse selection when zs (θ, p) < zI . The final term is the deadweight

loss of taxation. For a given signal p, we can write expected welfare as the expectation over all possible realizations

of θ of 7.

W (p) =

ˆ θ̄

θ

π (θ)w (θ, p,Ψ) dθ = Eθ [w (θ, p,Ψ)] (8)

2 Information Disclosure

We model disclosure as the optimal choice by the government of the precision p of binary signals about bank types,

which is set prior to the realization of the aggregate state θ (the fraction of good banks in the economy)11. We

regard the choice of p as capturing a government’s choice of informativeness of a stress test or asset quality review.

We assume the government can commit to truthfully disclose the results of the stress test in the sense that, having

chosen p, agents observe the realizations of signals without any further distortion.

The trade-off faced by the government in choosing the informativeness of disclosure is as follows: by emitting

a low precision signal, if θ ∈
[

zR, zI
]

, the government is ensuring that the outcome will be (L,L), as depicted in

Figure 6. That is, regardless of whether they receive the good or the bad signal, good banks face adverse selection

11Alternatively, we can interpret θ as being the market’s prior regarding the state of the banking system, and the government choosing
the precision of the stress test while being unaware of the market’s perceptions regarding the quality of the banking system.
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in credit markets. On the other hand, emitting a high precision signal ensures that the outcome will be (R, I): this

can be seen as a riskier alternative, as depending on the realization of θ, the fraction of banks that receive the bad

signal and suffer a run will vary. Maximum risk is achieved by setting an intermediate level of precision, in which

case the government gambles between the worst possible outcome, (R,L) (where banks with the bad signal suffer

a run and banks with the good signal face suboptimal investment), and the best possible one, (L, I) (where banks

with the bad signal face suboptimal investment, but are saved from a run, and banks with the good signal fully

invest).

The government’s disclosure problem, before the aggregate state θ is realized, can be formulated as

max
p∈[ 12 ,1]

Eθ [w (θ, p, 0)] (9)

where w (θ, p, 0) is the ex-post welfare function defined in (7) without any government spending, Ψ = 0, since we

ignore fiscal policy for now. The following proposition summarizes the solution to the government’s program for

the particular case where θ ∈
[

zR, zI
]

.

Proposition 5. The expected welfare function is given by

W (p) = E [θ]Ag + (1− E [θ])
[

Ab + (qV − k)
]

+ p (qV − k)

[

ˆ θ̄

θI
1
(p)

θdΠ (θ)−

ˆ θR
0
(p)

θ

(1− θ) dΠ (θ)

]

− (1− δ)

{

(1− p)Ag

ˆ θR
0
(p)

θ

θdΠ (θ) + pAb

ˆ θR
0
(p)

θ

(1− θ) dΠ (θ)

}

where Π is the cdf of the aggregate state θ. The expected welfare function is linear for p ≥ p1, p1 : θR0 (p1) = zI and

θI1 (p1) = zR, given by

p1 ≡
zI

(

1− zR
)

zI (1− zR) + zR (1− zI)

W (p)|p∈[p1,1]
= E [θ]Ag [p+ δ (1− p)] + (1− E [θ])Ab [1− p (1− δ)] + (qV − k) [pE [θ] + (1− p) (1− E [θ])]

being potentially non-differentiable at this point. This second component of the welfare function has a local optimum

at p = 1 if and only if

E [θ] ≥
(1− δ)Ab + (qV − k)

(1− δ) (Ag +Ab) + 2 (qV − k)

having a local optimum at p = p1 otherwise. The first-order condition for the government’s problem for p ≤ p1 is
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given by

(qV − k)

[

ˆ θ̄

θI
1
(p)

θdΠ (θ)− pθI1 (p)π
[

θI1 (p)
] dθI1
dp

(p)

]

(10)

+ (1− δ)Ag

[

ˆ θR
0
(p)

θ

θdΠ (θ)− (1− p) θR0 (p)π
[

θR0 (p)
] dθR0

dp
(p)

]

−
[

(1− δ)Ab + (qV − k)
]

[

ˆ θR
0
(p)

θ

(1− θ) dΠ (θ) + p
[

1− θR0 (p)
]

π
[

θR0 (p)
] dθR0

dp
(p)

]

Proof. See Appendix C.

The potential non-differentiability is better understood by looking at Figure 6: p1 is the value of precision beyond

which the potential outcome regions (L, I) and (R,L) disappear, and (R, I) becomes the only possible outcome.

For θ ∈
[

zR, zI
]

, the two regions disappear at the same value of p, p1. The first-order condition for disclosure

choice, expression (10), shows the trade-off faced by the government in choosing p: it consists of three different

terms (one on each line). The first term is the marginal benefit of mitigating adverse selection: by disclosing more,

the government is ensuring that banks with the good signal are more likely to be good types and this contributes

to unfreezing credit markets. Through the same mechanism, the government makes good banks less likely to suffer

runs, and this is the marginal benefit captured by the second term. The third line represents the costs of disclosure:

by raising p, the government increases the likelihood that banks with the bad signal are bad banks, and thus makes

this category more susceptible to runs. Having bad banks suffer runs entails two costs: the cost of liquidating legacy

assets, and the foregone net present value of investment, since in the credit market equilibrium bad banks always

borrow and invest. The trade-off is illustrated in Figure 7, which plots the expected masses of runs and lemons for

different values of p, assuming that π (θ) = U
[

zR, zI
]

. As p increases, the government decreases the expected mass

of lemons in the economy, at the cost of causing runs.

The shape of the welfare function will, in general, depend on π (θ), the distribution of the aggregate state.

Figures 8 and 9 show the shape of the welfare function for different choices of the distribution of θ. Figure 8 plots

the welfare function as a function of p for θ ∼ U
[

zR, zI
]

. In this case, the welfare function is convex, meaning

that the government’s program is non-convex: the government therefore prefers not to disclose, and set the signal’s

precision to p = 1
2 . Figure 9 shows a case where convexity of the government’s problem is partially restored by

changing the distribution of θ to one with a higher mean (θ ∼ B (5, 1) in the example, where this Beta distribution

is rescaled so as to take values only on the
[

zR, zI
]

interval). In this case, the government is willing to incur some

risk by setting an intermediate disclosure level because the likelihood of the best outcome, (L, I), is greater than

the likelihood of the worst outcome (R,L).

To better understand how does the choice of disclosure influence total risk faced by the planner, Figure 10 plots

the variance of welfare as a function of p for the uniform case. As we would expect, variance is increasing until it

attains a maximum before p0, the point at which the (L,L) outcome disappears and gives place to (R, I). Variance

19



Figure 7: Expected mass at L and R, θ ∼ U
[

zR, zI
]
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This figure plots the expected mass in region L (banks with posterior belief in the
[

zR, zI
]

interval) and region R (banks with posterior

belief in the
[

0, zR
]

interval) as a function of p, assuming a uniform distribution for the aggregate state π (θ) = U
[

zR, zI
]

.

Figure 8: Welfare Function, θ ∼ U
[

zR, zI
]
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This figure plots the welfare function W (p) for the uniform θ case. p0 is such that θR
0
(p0) = θI

1
(p0), and p1 is such that θR
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(p1) = zI

and θI
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(p1) = zR.
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Figure 9: Welfare Function, θ ∼ B (5, 1)
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This figure plots the welfare function W (p) for the uniform θ case. p0 is such that θR
0
(p0) = θI

1
(p0), and p1 is such that θR

0
(p1) = zI

and θI
1
(p1) = zR.

is then decreasing, as the weight on the extreme outcomes (R,L) and (L, I) decreases, and starts increasing again

for p ≥ p1. The reason is that after this point, the extreme outcomes are no longer possible, (R, I) is the only

outcome and ex-post welfare is linear in p. Given our parametrization, both welfare and its variance are linearly

increasing in the level of disclosure. 12

In this section, we turn to describing in greater detail the fiscal interventions that the government can use to

mitigate adverse selection and bank runs. We start by analyzing each type of fiscal intervention separately in the

absence of information disclosure, and we proceed to analyze the two interventions jointly. Unlike disclosure, fiscal

interventions are undertaken after the aggregate state θ is realized.

2.1 Optimal Intervention in Credit Markets

In the region zs ∈ [zR, zI ] where banks do not suffer runs, but where credit markets are affected by adverse

selection, the government may want to intervene to unfreeze the markets and increase investment. Philippon and

Skreta (2012) and Tirole (2012) study how to design such an intervention in order to minimize its cost for tax

payers. In our setup, we have the following result.

12In this range, the planner knows that banks with a bad signal suffer a run and banks with a good signal invest with certainty.
The planner is then trading off the cost of having bad banks suffering runs and not investing for the benefit of having good banks not
suffering a run and fully investing. Since the social value of investment is the same for good and bad banks, the planner is effectively
trading runs on bad banks for no runs on good banks. Runs on good banks are costlier than runs on bad banks, and so the planner has
incentives to fully disclose in this region, for reasonable parametrizations. As the planner decreases the amount of pooling, the variance
of welfare also increases in this region.
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Figure 10: Variance of Welfare, θ ∼ U
[

zR, zI
]
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This figure plots the welfare function W (p) for the uniform θ case. p0 is such that θR
0
(p0) = θI
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(p0), and p1 is such that θR
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and θI
1
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Proposition 6. The cost of intervention in markets with adverse selection equals the informational rents paid

to informed parties. Under the assumptions of this model, direct lending by the government, or the provision of

guarantees on privately issued debts, are constrained efficient.

Proof. See Philippon and Skreta (2012).

The proposition says that if the government chooses to intervene, it should either lend directly to the banks, or

it should provide guarantees on new debts. For any category of posterior zs, the optimal policy consists of choosing

a number of banks αs and guaranteeing loans made to those banks at interest rate rs = rg = qV
k , so that good

banks become willing to invest. Note that the policy always consists on either setting r = rg or doing nothing,

since (as explained below) setting r ∈
(

rg , 1
q

]

is costly on average for the government and does not contribute to

mitigating adverse selection. Setting r < qV
k

is also costly and cannot increase investment further.

For a particular bank with posterior z, the cost of implementing the program is

z(k − rgk) + (1 − z)(k − qrgk) = z(k − qV ) + (1− z)(k − q2V )

the cost is strictly positive as long as z ≤ zI . The net marginal benefit of implementing this program is given by

z(qV − k)
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Note that the benefit is increasing in z, while the costs are decreasing in z. Given that the equilibrium is described

by two categories of posteriors, z0 (θ, p) , z1 (θ, p), this means that the government will always strictly prefer to

support banks in the good signal category z1 (θ, p) before starting to support banks in the bad signal category, since

the marginal benefit is strictly greater and marginal costs are strictly lower.

The total cost of the credit guarantee program is given by

Ψk =
∑

zs(θ,p)∈[zR,zI ]

αs {k − qV [zs (θ, p) + q (1− zs (θ, p))]} (11)

With the ex-post welfare of implementing this policy being given by

w(θ, p,Ψk) = ȳ1 +
∑

zs(θ,p)≤zR

ns (θ, p) δ
{

zs (θ, p)A
g + [1− zs (θ, p)]A

b
}

+
∑

zs(θ,p)∈[zR,zI ]

[ns (θ, p)− αs]
{

zs (θ, p)A
g + [1− zs (θ, p)]A

b + [1− zs (θ, p)] (qV − k)
}

+
∑

zs(θ,p)∈[zR,zI ]

αs

{

zs (θ, p)A
g + [1− zs (θ, p)]A

b + (qV − k)
}

(12)

+
∑

zs(θ,p)≥zI

ns (θ, p)
{

zs (θ, p)A
g + [1− zs (θ, p)]A

b + (qV − k)
}

− γ
(

Ψk
)2

Note that this expression is exactly like (7) except for two differences: in the second line, when accounting for

the welfare contribution of classes that suffer adverse selection, the relevant mass becomes ns (θ, p)− αs, adjusting

for the number of banks that the government decides to support. This gives rise to the term in the third line:

the welfare contribution of the supported banks, which have belief zs (θ, p) ∈
[

zR, zI
]

but fully invest thanks to

government support.

Since the intervention is ex-post, the government takes the aggregate state θ and the precision signal p as given

when choosing the size of the intervention, solving the following program

max
{αs}s∈S

w
(

θ, p,Ψk
)

s.t. αs ∈ [0, ns (θ, p)] , ∀s ∈ S

The following proposition summarizes the solution to this program.

Proposition 7. The optimal credit guarantee for each posterior class s ∈ S is given by the following first-order

condition

zs (θ, p) (qV − k)− 2γ
(

Ψk
)

{k − qV [zs (θ, p) + q (1− zs (θ, p))]} ≤ 0
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In the binary signals case, for z0 (θ, p) ≤ z1 (θ, p), the optimal policy can be characterized as follows

α1 = max

{

0,min

{

n1 (θ, p) ,
z1 (θ, p) (qV − k)

2γ {k − qV [z1 (θ, p) + q (1− z1 (θ, p))]}
2

}}

If α1 < n1 (θ, p), then α0 = 0. Otherwise,

α0 = max

{

0,min

{

n0 (θ, p) ,
z0 (θ, p) (qV − k)

2γ {k − qV [z0 (θ, p) + q (1− z0 (θ, p))]}
2 −

{k − qV [z1 (θ, p) + q (1− z1 (θ, p))]}

{k − qV [z0 (θ, p) + q (1− z0 (θ, p))]}
n1 (θ, p)

}}

Proof. See Appendix B.

The proposition describes the optimal policy as follows: since the marginal benefit of saving classes with higher

posterior beliefs is greater, and the marginal cost of saving these classes is lower, the government first guarantees

loans of banks with belief z1 (θ, p). Banks that receive the bad signal receive support only if either banks that

received the good signal do not face adverse selection, or are fully supported, α1 = n1 (θ, p). The optimal policy

for the uniform case, θ ∼ U
[

zR, zI
]

is illustrated in the (p, θ) space in Figure 11. The upper panel depicts the

percentage of banks with the bad signal that are supported: full support is only optimal for high enough realizations

of θ. This can be understood by looking at the lower panel, the fraction of banks with the good signal that receive

guarantees. The contour of the θI1 (p) locus is evident: above this line, banks with the good signal never face adverse

selection, so no support needs to be provided. Below this locus, banks with the good signal face adverse selection,

and for a wide range of (p, θ) pairs full support is provided. As θ decreases, however, fewer and fewer banks are

supported: as θ decreases, both the marginal benefit of supporting this category decreases, and the marginal cost

increases. The figure plots optimal policies for a fixed level of fiscal capacity γ; α0 and α1 are decreasing in this

parameter.

2.2 Deposit Guarantees

The government may also intervene to prevent liquidation by banks that are susceptible to runs (those with posterior

z < zR). Preventing runs on these banks is desirable both because liquidation is costly in itself, and also because

banks that are run on are unable to invest at t = 1.

To prevent runs, the government announces deposit guarantees for a mass of banks βs in posterior classes lower

than zR. For these banks, the government guarantees to repay depositors the contractual deposit amount D at

t = 2. By offering this guarantee, the government prevents asset liquidation by assuming the risk of the deposit

contract: it commits to payD to the depositors, and demands D from the bank. As in the decentralized equilibrium,

some banks may be unable to repay their senior debt, in which case the guarantee is costly for the government.
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Figure 11: Optimal Credit Guarantee, θ ∼ U
[

zR, zI
]
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This figure depicts the optimal credit guarantee policy in the (p, θ)space for a uniform θ. The top panel plots the percentage of bad

signal banks that are supported by the policy, α0/n0 (θ, p). The bottom panel plots the percentage of good signal banks that are supported

by the policy, α1/n1 (θ, p).

25



The cost of guaranteeing the deposits for a bank with posterior belief z is given by

D − zD− (1− z)
[

qD + (1− q)Ab
]

That is, the government spends D regardless of the bank’s type (the amount that it guarantees). If the bank is

good, with probability z, then it is able to repay its senior debt in full. Otherwise, the bank is bad and only able

to repay if the investment is successful, with probability q. With probability 1 − q, the investment fails and the

bad bank is only able to repay the value of its legacy assets Ab, in which case the government makes a loss (since it

had guaranteed D > Ab). The government therefore breaks even if it guarantees good banks, but makes losses on

guarantees of bad banks (in expectation).

The net benefit of guaranteeing bank with belief z is

(1− δ)
[

zAg + (1− z)Ab
]

+ (1− z) (qV − k)

The benefit has two components: first, legacy assets are not liquidated and, second, bad banks that are saved invest

in the project.13

The total cost of the deposit guarantee policy is

Ψd =
∑

s:zs(θ,p)≤zR

βs (1− zs (θ, p)) (1− q)
(

D −Ab
)

(13)

and ex-post welfare is

w(θ, p,Ψd) = ȳ1 +
∑

zs(θ,p)≤zR

[ns (θ, p)− βs] δ
{

zs (θ, p)A
g + [1− zs (θ, p)]A

b
}

+
∑

zs(θ,p)≤zR

βs

{

zs (θ, p)A
g + [1− zs (θ, p)]A

b + [1− zs (θ, p)] (qV − k)
}

+
∑

zs(θ,p)∈[zR,zI ]

ns (θ, p)
{

zs (θ, p)A
g + [1− zs (θ, p)]A

b + [1− zs (θ, p)] (qV − k)
}

(14)

+
∑

zs(θ,p)≥zI

ns (θ, p)
{

zs (θ, p)A
g + [1− zs (θ, p)]A

b + (qV − k)
}

− γ
(

Ψd
)2

The terms that differ with respect to expression 7 are in the first and second lines. In the first line, the welfare

contribution of banks that suffer runs and are not saved has its weight reduced by βs. The second line presents the

welfare contribution of the banks that are saved from the run, but are then subject to suboptimal investment due

13Note that if the bank is good it will not invest, since z ≤ zR < zI .
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to adverse selection. The government solves the following program for this ex-post intervention

max
{βs}s∈S

w
(

θ, p,Ψd
)

s.t. βs ∈ [0, ns (θ, p)] , ∀s ∈ S

The first-order condition for βs is

(1− δ)
[

zs (θ, p)A
g + (1− zs (θ, p))A

b
]

+ (1− zs (θ, p)) (qV − k)− 2γ
(

Ψd
)

(1− zs (θ, p)) (1− q)
(

D −Ab
)

≤ 0

with the FOC being strictly negative if βs = 0 and strictly positive if βs = ns (θ, p).

Proposition 8. The optimal deposit guarantee for each posterior class s ∈ S is given by the following first-order

condition. Define the net marginal benefit of supporting class with posterior s as

MBs ≡ (1− δ)
[

zs (θ, p)A
g + (1− zs (θ, p))A

b
]

+ (1− zs (θ, p)) (qV − k)

and the net marginal cost of supporting the class as

MCs ≡ (1− zs (θ, p)) (1− q)
(

D −Ab
)

In the optimal intervention, the government ranks the ratio of net marginal benefits to net marginal costs for all

posterior classes, s1, s2, . . . such that

MBs1

MCs1

≥
MBs2

MCs2

≥ . . . ≥
MBsN

MCsN

and the optimal intervention can be characterized as follows: set βsi = 0 if βsi−1
< nsi−1

(θ, p) for i > 1. Otherwise,

set

βsi = max

⎧

⎨

⎩

0,min

⎧

⎨

⎩

nss (θ, p) ,
MBsi

2γ (MCsi)
2 −

∑

j<i

MCsj

MCsi

nsj (θ, p)

⎫

⎬

⎭

⎫

⎬

⎭

(15)

Proof. See Appendix B.

The optimal policy for the case of binary signals, s = {0, 1} follows as a corollary.

Corollary 9. If signals are binary, and z0 (θ, p) ≤ z1 (θ, p), the optimal intervention consists of supporting banks

that received the good signal first, and only then supporting banks that received the bad signal. That is,

β1 = max

{

0,min

{

n1 (θ, p) ,
MB1

2γ (MC1)
2

}}
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Figure 12: Optimal Deposit Guarantee, θ ∼ U
[

zR, zI
]
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This figure depicts the optimal deposit guarantee policy in the (p, θ)space for a uniform θ. The single panel plots the percentage of bad

signal banks that are supported by the policy, α0/n0 (θ, p). Note that no banks with the good signal are ever supported, since they have

zero probability of facing a run. This is due to the fact that θ ≥ zR ≥ θR
1
(p) ,∀p ∈

[

1

2
, 1
]

.

and β0 = 0 if β1 < n1 (θ, p). Otherwise,

β0 = max

{

0,min

{

n0 (θ, p) ,
MB0

2γ (MC0)
2 −

MC1

MC0
n1 (θ, p)

}}

Proof. See Appendix B.

Note that Proposition 7 can also be seen as a particular application of Proposition 8. In the particular case of

the credit policy, and appropriately redefining marginal costs and marginal benefits, we have that MB1

MC1
> MB0

MC0
,

and so classes with the good signal are always supported first (and must be fully supported before the government

supports any bank in the posterior class that received the bad signal). Figure 12 depicts the optimal deposit policy

in the (p, θ) space. Note that only β0 is considered, since θ ∼ U
[

zR, zI
]

excludes, as discussed, the case in which

banks with the good signal are subject to runs. For our chosen parametrization, the marginal benefits and costs of

the policy are such that full support is provided for all regions where banks suffer runs. Note that the shape of the

locus θR0 (p) is evident, in separating the no support from the full support regions (no runs take place in the region

that corresponds to no support).
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2.3 Combining deposit insurance and credit guarantees

To complete our description of equilibrium with fiscal intervention, we characterize the ex-post welfare function

when the government can use both policies.

w(θ, p,Ψ) = ȳ1 +
∑

zs(θ,p)≤zR

[ns (θ, p)− βs] δ
{

zs (θ, p)A
g + [1− zs (θ, p)]A

b
}

(16)

+
∑

zs(θ,p)≤zR

[βs − αs]
{

zs (θ, p)A
g + [1− zs (θ, p)]A

b + [1− zs (θ, p)] (qV − k)
}

+
∑

zs(θ,p)∈[zR,zI ]

[ns (θ, p)− αs]
{

zs (θ, p)A
g + [1− zs (θ, p)]A

b + [1− zs (θ, p)] (qV − k)
}

+
∑

zs(θ,p)≤zI

αs

{

zs (θ, p)A
g + [1− zs (θ, p)]A

b + (qV − k)
}

+
∑

zs(θ,p)≥zI

ns (θ, p)
{

zs (θ, p)A
g + [1− zs (θ, p)]A

b + (qV − k)
}

− γ (Ψ)2

where Ψ ≡ Ψk +Ψd is total spending. The first line corresponds to banks that face runs and are not supported by

the deposit guarantee. The second line corresponds to banks that are saved from runs, but not supported by the

credit guarantee. The third line are banks that face adverse selection and are not supported by the credit guarantee.

The fourth line corresponds to all banks that are supported by the credit guarantee. The fifth line is the welfare

contribution of banks that fully invest, while the sixth and last line corresponds to the deadweight costs of total

spending.

Optimal joint fiscal policy is the solution to

max
{αs,βs}s∈S

w (θ, p,Ψ) (17)

s.t. βs ∈ [0, ns (θ, p)] , ∀s ∈ S

αs ∈
[

0, I
{

zs ≤ zR
}

βs + I
{

zs ≥ zR
}

ns (θ, p)
]

The government chooses {αs,βs} to maximize (16) subject to the constraints that βs ∈ [0, ns (θ, p)] and that αs

cannot exceed βs in case the respective class was saved by a run (it is ineffective to offer credit guarantees to banks

that are not saved from runs), or ns (θ, p) otherwise. Optimal joint fiscal policy is summarized by Proposition 10

and depicted in Figure 13
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Proposition 10. (Optimal Joint Fiscal Policy) Define the marginal benefit from each policy as

MBαs
s ≡ zs (θ, p) (qV − k)

MBβs
s ≡ (1− δ)

[

zs (θ, p)A
g + (1− zs (θ, p))A

b
]

+ (1− zs (θ, p)) (qV − k)

and the marginal costs

MCαs
s ≡ k − qV [zs (θ, p) + q (1− zs (θ, p))]

MCβs
s ≡ (1− zs (θ, p)) (1− q)

(

D −Ab
)

The optimal policy consists of ranking policy-signal pairs (ζs1 , s1) , (ζs2 , s2) , . . . for ζ ∈ {α,β} such that

MB
ζs1
s1

MC
ζs1
s1

≥
MB

ζs2
s2

MC
ζs2
s2

≥ . . . ≥
MB

ζsi
si

MC
ζsi
si

For i = 1, if z1 (θ, p) ≥ zR or ζs1 = βs1 , the optimal policy consists of setting

ζsi = max

⎧

⎪

⎨

⎪

⎩

0,min

⎧

⎪

⎨

⎪

⎩

nsi (θ, p) ,
MB

ζsi
si

2γ
(

MC
ζsi
si

)2

⎫

⎪

⎬

⎪

⎭

⎫

⎪

⎬

⎪

⎭

otherwise, if z1 (θ, p) < zR and ζs1 = αs1 , the optimal policy is

αsi = max

⎧

⎨

⎩

0,min

⎧

⎨

⎩

βsi ,
MB

αsi
si

2γMC
αsi
si

(

MC
αsi
si +MC

βsi
si

)

⎫

⎬

⎭

⎫

⎬

⎭

αsi = βsi

For i > 1, ifζsi−1
< nsi−1

(θ, p), the optimal policy consists of setting ζsj = 0, ∀j ≥ i. Otherwise, and if ζsi−1
=

nsi−1
(θ, p), and zi (θ, p) ≥ zR or ζsi = βsi , the optimal policy is

ζsi = max

⎧

⎪

⎨

⎪

⎩

0,min

⎧

⎪

⎨

⎪

⎩

nsi (θ, p) ,
MB

ζsi
si

2γ
(

MC
ζsi
si

)2 −
∑

j<i

MC
ζsj
sj

MC
ζsi
si

ζsj

⎫

⎪

⎬

⎪

⎭

⎫

⎪

⎬

⎪

⎭

Finally, for i > 1, if ζsi−1
= nsi−1

(θ, p), and zi (θ, p) < zR, and ζsi = αsi , the optimal policy is

αsi = max

⎧

⎨

⎩

0,min

⎧

⎨

⎩

βsi ,
MB

αsi
si

2γMC
αsi
si

(

MC
αsi
si +MC

βsi
si

) −
∑

j<i

MC
ζsj
sj

(

MC
αsi
si +MC

βsi
si

)ζsj

⎫

⎬

⎭

⎫

⎬

⎭

αsi = βsi
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Proof. See Appendix B.

The following Corollary applies Proposition 10 to our binary signal environment.

Corollary 11. The government sets α1 before setting α0, and β1 before setting β0.

Proof. See Appendix B.

In general, it is not possible to rank α1 and β0, or even α1 and β1 without further restrictions on the parameters.

Figure 13 depicts optimal joint fiscal policy. The top panels depict the fraction of banks with the bad signal and

the good signal that are supported by the credit guarantee; the bottom left panel depicts the fraction of banks with

the bad signal that are supported by the deposit guarantee (once again, no banks with the good signal ever face

runs for this parametrization), while the final panel plots total spending Ψ = Ψk + Ψd. As can be seen from the

bottom left panel, full deposit support is still optimal in the joint case. Note that the top panels are similar to the

analysis with credit guarantees only (Figure 11), with the main difference being the discontinuity in the support

for banks with the good signal. This discontinuity follows the θR0 (p) locus, and arises from the fact that in the

present parametrization, the marginal benefit/cost ratio of providing deposits guarantees (for the bad signal banks)

exceeds that of providing credit guarantees for good signal banks. Thus, when runs start taking place south of

the θR0 (p) locus, fiscal resources devoted to credit guarantees are abruptly reduced. The final, bottom right, panel

depicts total spending. Note that spending is greatest in two regions: around the θI1 (p) locus, when both full credit

support is granted to banks with the good signal and full deposit support offered to banks with the bad signal; and

in the northwestern region, where credit guarantees are offered to both types of banks, those that received the good

and those that received the bad signals. Note that while the fraction of banks that is supported south of θR0 (p) and

north of θI1 (p) (where only β0 is active) does not change, total spending varies: this is due to the fraction of banks

requiring support decreasing as θ increases.

Figure 14 illustrates joint policy looks from an ex-ante perspective, as a function of the fiscal capacity parameter

γ. The left panel plots the expected credit policy support, Eθ

[

∑

s∈{0,1} ns (θ, p)αs

]

, while the right panel plots

the expected deposit policy support Eθ

[

∑

s∈{0,1} ns (θ, p)βs

]

for different levels of disclosure, p = {0.5, 0.75, 1}.

Naturally, the expected level of support declines with the value of γ. For p = 0.5, the outcome (L,L) is certain, so

there are no runs (and no deposit guarantees). On the other hand, for p = 1, there is no adverse selection, and the

credit policy is never used. For p = 0.75, there are both runs and lemons, and so the government uses both policies.

3 Disclosure with Fiscal Interventions

Having described the optimal ex-ante disclosure and ex-post fiscal policies separately, we characterize the problem

of a government that has access to both types of policies. Note that the analysis of optimal fiscal policy undertaken

in Section 2 applies: since fiscal policy is set after aggregate uncertainty has been realized, it is also set for a given
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Figure 13: Optimal Joint Fiscal Policy, θ ∼ U
[

zR, zI
]
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This figure depicts the optimal joint fiscal policy in the (p, θ)space for a uniform θ. The top left panel plots the percentage of bad

signal banks that are supported by the credit policy, α0/n0 (θ, p). The top right panel plots the percentage of good signal banks that are

supported by the credit policy, α1/n1 (θ, p). The bottom left panel plots the percentage of bad signal banks that are supported by the

deposit guarantee policy, β0/n0 (θ, p). The bottom right panel plots total spending Ψ = Ψk +Ψd.

Figure 14: Optimal Joint Fiscal Policy, θ ∼ U
[

zR, zI
]
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This figure depicts the optimal joint fiscal policy as a function of the fiscal capacity parameter γ, for different values of p. The left

panel plots the expected number of banks that receive credit support, while the right panel plots the expected number of banks that receive

deposit support.
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level of disclosure p; the previous section characterized fiscal policy for arbitrary pairs (p, θ). The problem becomes

then to choose the optimal signal precision p, taking as given the ex-post choice of fiscal policy. Formally, the

government’s problem can be written as

max
p∈[ 12 ,1]

Eθ

[

max
{αs,βs}s∈S

w (θ, p,Ψ)

]

(18)

s.t. βs ∈ [0, ns (θ, p)] , ∀s, p, θ

αs ∈
[

0, I
{

zs (θ, p) ≤ zR
}

βs + I
{

zs (θ, p) ≥ zR
}

ns (θ, p)
]

, ∀s, p, θ

where the ex-post welfare function is defined in (16).

The top left panel of Figure 15 depicts the optimal choice of disclosure, p∗ for varying levels of γ, for θ ∼

U
[

zR, zI
]

. Optimal disclosure is (weakly) decreasing in γ: high fiscal capacity translates into greater capability

to provide credit and deposit guarantees - to “mop up” in case a bad state of the world materializes, leading

the government to choose high levels of disclosure. As γ increases, and fiscal capacity becomes more limited, the

government starts choosing intermediate levels of disclosure, finally opting for no disclosure, p = 0.5, for γ high

enough. The discontinuous nature of the optimal level of disclosure reflects the non-convex problem faced by the

government. The top right panel depicts the likelihood of each outcome, conditional on the optimal disclosure

policy: for high levels of fiscal capacity, the government ensures that banks with bad signals are in the run region

and banks with good signals are in the investment region (the outcome is (R, I) with probability one). As pointed

out previously, the government is exposed to random sizes of runs in this state, but fiscal capacity is high enough to

tolerate substantial fluctuations in spending (due to high fluctuations in the level of support that the government

must provide). As γ increases, the government moves to the left in diagram 6, and two new possible outcomes

appear, (L, I) and (R,L), but with very low probability. As no disclosure becomes optimal, only the full adverse

selection outcome (L,L) becomes feasible. The same conclusions can be taken from the bottom left panel of the

Figure, which plots expected government spending, Eθ [Ψ] given the optimal policy p∗. For low levels of γ, when full

disclosure is optimal, no adverse selection ever takes place, so the only source of spending are deposit guarantees.

As no disclosure becomes optimal, no more runs take place, but the economy becomes subject to adverse selection,

and so the government provides credit guarantees. Also, as one would expect, expected spending is decreasing in γ.

The final panel plots expected welfare, which is decreasing in γ. Note, however, that while the optimal policies are

discontinuous, the same is not true of expected welfare. The changing slope reflects the transition from the high

disclosure to the no disclosure region, welfare being less sensitive to changes in fiscal capacity in the latter.

To better understand the trade-offs faced by the planner, Figure 16 plots expected welfare with and without

fiscal policy. The chosen levels of fiscal capacity, γ = 10 and γ = 30 imply full and interior disclosure as optimal

policies, respectively. While in the baseline parametrization, the government chooses not to disclose at all, p = 1
2 ,

the availability of fiscal policy increases the incentives to disclose since the government becomes capable of solving
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Figure 15: Optimal disclosure choice with fiscal policy
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This figure plots several variables as a function of γ, the measure of fiscal capacity. The top left panel plots p∗, the optimal
disclosure policy. The top right panel plots the likelihood of each possible outcome given the optimal disclosure policy. The

bottom left panel plots expected spending, broken down by type of spending. The bottom right panel plots expected welfare

given the optimal disclosure policy.
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Figure 16: Expected Welfare with and without Fiscal Policy
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This figure plots expected welfare with optimal fiscal policy (red dashed line, for γ = 10, dotted green line for γ = 30) and

without fiscal policy (blue solid line).

both the runs and adverse selection problems directly. This creates the incentives to optimally take on some more

risk, and choosing an optimal p ≥ 1
2 , where runs are possible in equilibrium. Figure 17 plots variance of welfare for

the considered cases. Note that for p = 1
2 , the variance of welfare with policy is strictly greater than the variance of

welfare without policy: with no policy, there is no uncertainty, but once credit policies become available, the size of

the intervention depends on the realization of θ, and is thus uncertain. For all other values of p, however, the fiscal

backstop substantially reduces the variance of welfare. The role of fiscal capacity as insurance is also highlighted

in this figure: at the optimal levels of disclosure when fiscal capacity is available, the implied variance of welfare is

strictly greater than the one chosen by the planner in the absence of fiscal policy.

3.1 Crisis Scenarios

We now analyze how the optimal disclosure policy changes in response to changes in the lower bound of the

distribution of the aggregate state π (θ), which we interpret as capturing the severity of a financial crisis. Recall

from Figures 5 and 6 that θ = zR eliminates the outcome in which both categories suffer a run. We focus on

downside risk by studying how the optimal disclosure policy changes when θ < zR, and a system-wide run, outcome

(R,R) becomes a possibility. Recall from the aforementioned diagrams that the likelihood of this crisis state (as

measured by the size of the region for a fixed choice of p, since the distribution of risk is uniform) decreases as

signal precision p increases. The government can then eliminate the possibility of a systemic run by setting a high

enough precision for the signal.
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Figure 17: Variance of Welfare with and without Fiscal Policy
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This figure plots the variance of welfare with optimal fiscal policy (red dashed line, for γ = 10, dotted green line for γ = 30)

and without fiscal policy (blue solid line).

This change in the structure of the problem has the potential to considerably alter the government’s incentives:

previously, no disclosure p = 1
2 was the “safe” option that ensured the predictable outcome of both classes simulta-

neously facing adverse selection but being saved from runs. Full disclosure, on the other hand, involved a risky bet:

while the government was certain that banks with the good signal would be spared from runs and adverse selection,

those with the bad signal faced a run, and the size of this run was variable and dependent on the realization of

θ. This gamble now becomes more attractive: the formerly safe option of no disclosure is now very risky, since it

maximizes the likelihood of the disaster outcome(R,R).

Figure 18 plots the optimal disclosure policy as a function of θ, for different levels of fiscal capacity. The blue

solid line corresponds to the case where no fiscal policy is available (or γ → ∞), while the red dashed line corresponds

to high fiscal capacity, γ = 10, and the green dotted line to γ = 30. For the baseline parametrization, our results

are robust to the possibility of disaster risk: the level of disclosure is monotonically increasing in fiscal capacity

(decreasing in γ). Note, however, that the presence of disaster risk does create some incentives for disclosure: the

planner with no fiscal capacity opts for a positive, albeit small, amount of disclosure. This is related to the fact

described in the previous paragraph: no disclosure is no longer risk-free and may result in a system-wide run. By

disclosing a small amount of information, the planner can reduce the probability of a full run taking place. This

incentive is exacerbated when some fiscal capacity is available, as evidenced by the behavior of the green line. No

disclosure is exactly optimal at θ = zR when fiscal capacity is limited, as this now ensures that no run will take

place. As θ increases beyond zR, the disclosure function for low fiscal capacity becomes increasing. In fact, the
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Figure 18: Optimal disclosure choice as a function of θ, Baseline
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This figure plots the optimal disclosure policy as a function of the lower bound of the distribution of θ, p (θ). The blue solid
line corresponds to the case with no fiscal policy, or low fiscal capacity γ → ∞. The red dashed line corresponds to γ = 10,

and the green dotted line to γ = 30.

function becomes exactly linear with a slope equal to one: for this region, the only possible outcome for p = 0.5

is still (L,L), but the planner can increase p in order to put positive probability on the (L, I) outcome without

putting any positive probability on (R,L). So no disclosure becomes strictly dominated by some disclosure.

When fiscal policy is available, the structure of the optimal policy can change considerably. The red dashed

line corresponds to γ = 10, or ample fiscal capacity. In this case, the planner finds it optimal to disclose almost

fully. Due to ample fiscal capacity, the government is always able to deal with any adverse scenario through fiscal

interventions. As fiscal capacity becomes more limited, this is no longer the case: the green dotted line plots the

optimal policy for γ = 30. While the government decides to disclose less, the level of information that is revealed

still dominates that of a fiscally incapable government. For θ ≥ zR, the behavior of the optimal policy obeys a logic

that is similar to the one that prevails in the absence of policy: for this region: a full run becomes impossible, while

less and less mass is placed on the (R,L) outcome. By fully disclosing, the government needs only to activate one

policy instrument: deposit guarantees for banks that receive the bad signal (and whose set coincides with that of

bad banks, since the signal is perfect). This turns out to be cheaper than revealing less information and having to

activate credit guarantee policies.

We now show that changes in our parametrization can, in some cases, reverse our main result in the case of

disaster risk. Figure 19 plots the optimal choice of disclosure for different levels of θ for an alternative parameteri-

zation where we increase Ag, thus making runs on good banks costlier. Once again, the blue solid line corresponds

to the case where no fiscal policy is available (or γ → ∞), while the dashed red line corresponds to γ = 10, and
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Figure 19: Optimal disclosure choice as a function of θ, High Ag
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This figure plots the optimal disclosure policy as a function of the lower bound of the distribution of θ, p (θ), for a higher
value of Ag. The blue solid line corresponds to the case with no fiscal policy, or low fiscal capacity γ → ∞. The red dashed

line corresponds to γ = 10, and the green dotted line to γ = 30.

the dotted green line to γ = 30. For a certain level of θ onwards, the previous analysis applies. It is, however,

interesting to note what happens when the probability of a disaster is very high (i.e., when θ is very low). With

no fiscal policy, the government opts for full disclosure if the lower bound on the support of θ is low enough: for

a very low value of θ, the (R,R) region is large and decreasing in p. Thus maximizing welfare is equivalent to

minimizing the likelihood of this outcome, and setting p = 1, full disclosure, is optimal. As θ increases, however, the

importance of this region becomes smaller, and the planner once again finds it optimal to choose lower disclosure.

The cost of gambling over the size of a certain run becomes greater than the cost of gambling between no run and

a full run. In the case of ample fiscal capacity (red dashed line), the planner finds it optimal to disclose almost

fully. In this case, the government is always able to deal with any adverse scenario through fiscal interventions.

Yet, the fiscally able government discloses less than the government with no fiscal capacity at all, and the level of

disclosure becomes non-monotonic in γ, as the green dotted line (γ = 30) illustrates. With some fiscal capacity, the

government can have incentives not to fully disclose even if a disaster is very likely. For sufficiently low values of θ,

more fiscal capacity can then result in less disclosure: in the absence of any fiscal capacity, the government chooses

to fully disclose to save all the (few) good banks in the economy. With limited fiscal capacity, the government can

save some banks from runs, and this gives room for some bad banks to be saved from runs and receiving the good

signal alongside good banks. Thus the fiscally able government can actually disclose less.
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4 Conclusion

Our main result is that a planner’s fiscal capacity is a key determinant of the optimal disclosure policy. When

fiscal capacity is high, it is optimal for the planner to reveal information and provide deposit guarantees to at least

a subset of banks that are vulnerable to runs, such that these banks survive and are able to invest in profitable

projects. When capacity is low, the planner prefers to avoid runs by not disclosing much information, and then

mitigate the resulting adverse selection in the credit market by providing credit guarantees.

In an extension to our main result, we consider the effect of increasing the probability of a “disaster scenario”

in which every bank suffers a run, and we find that our logic still applies. The result can be reversed if: (i) Runs

are costly enough, and (ii) the probability of a system-wide run is high enough. This reversal can be rationalized

by noting that if a system-wide run is very costly, the planner prefers to ensure that at least some banks survive

by fully disclosing the types of all banks, whereas a planner with some fiscal capacity can afford to disclose less

information in order to take advantage of the pooling of bad with good institutions.

These apparently contradictory results can be reconciled by the insight that fiscal capacity provides insurance

against the adverse effects of information disclosure, and that increasing the risk of a disaster scenario changes the

nature of the gamble involved in disclosing information. When there is no possibility of a system-wide run, the

safest option that is associated with a certain outcome is not to disclose any information. The alternative is to

subject the economy to a run of uncertain size. As the probability of a system-wide run increases, the payoff from

this otherwise safe scenario comes to dominate the planner’s expected payoff, and full disclosure - which prevents

system-wide runs by ensuring the survival of the good banks - becomes the safe choice. Interpreting fiscal capacity

as insurance, a planner that has better access to fiscal resources will be more willing to accept this gamble.

Our model can help shed light on the different approaches towards disclosure and stress testing that were

adopted on either side of the Atlantic. It is generally accepted that stress tests in the US involved greater levels

of disclosure in Europe. Our model suggests that this difference in policies is related to the asymmetry in fiscal

capacities between the two regions.

.
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A Parameters used in examples

To generate the figures, we use the parametrization in the table below.

Table 1: Parametrization for Numerical Examples

Parameter Description Value

Ag Good Assets 3.4
Ab Bad Asset 2.3
D Deposits 2.7
V Project Payoff 7.3
q Prob. Success 0.46
k Investment Cost 3.1
δ Recovery Rate 0.39

Unless otherwise noted, most examples use γ = 5, θ = zR, θ̄ = zI .

B Proofs

Proof of Proposition 4

Proof. Let the realization of the aggregate state and the precision of the signal be some arbitrary (θ, p) ∈
[

θ, θ̄
]

×
[

1
2 , 1

]

. This realization induces the posterior beliefs z0 (θ, p) and z1 (θ, p) for banks that received the bad and the

good signal, respectively. Consider first banks that received the bad signal, with posterior belief z0 (θ, p). Then,

following Lemma 1, these banks suffer a run if and only if

z0 (θ, p) ≤ zR ⇔ θ ≤
pzR

pzR + (1− p) (1− zR)
≡ θR0 (p)

Likewise, these banks suffer from adverse selection in credit markets (but no run) if and only if

z0 (θ, p) ∈
[

zR, zI
]

⇔ θ ∈

[

pzR

pzR + (1− p) (1− zR)
,

pzI

pzI + (1− p) (1− zI)

]

and so we define θI0 (p) ≡
pzI

pzI+(1−p)(1−zI) . Note that we have that θR0 (p) ≤ θI0 (p), and

dθj0 (p)

dp
=

zj
(

1− zj
)

[pzj + (1− p) (1− zj)]2
> 0, j = R, I

The derivation of θR1 (p) , θI1 (p) follows analogous steps for z1 (θ, p). Once again, we have that θR1 (p) ≤ θI1 (p) for

any p. We also have that
dθj1 (p)

dp
= −

zj
(

1− zj
)

[pzj + (1− p) (1− zj)]2
< 0, j = R, I
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Finally, it is straightforward to see that

θj1 (p) ≤ θj0 (p)

for any p ≥ 1
2 .

Proof of Proposition 7

Proof. The first-order condition follows from taking the derivative of (12) with respect to αs. Let N be the size of

the set S, the number of possible signals (and, thus, of posterior classes). The optimal policy follows from noticing

that the system of FOC with respect to αs can be written as

MBs

MCs
− 2γ

∑

i∈S

MCiαi ≤ 0

where

MBs = zs (θ, p) (qV − k)

MCs = k − qV [zs (θ, p) + q (1− zs (θ, p))]

are the marginal benefit and the marginal (fiscal) cost of supporting an additional bank in class with posterior belief

s, respectively. If there were no restrictions on the choice set, the planner would simply set

αs =
MBs

2γMC2
s

−
∑

t̸=s

MCt

MCs
αt

for each s ∈ S. The planner is, however, restricted to choosing αs ∈ [0, ns (θ, p)], where ns (θ, p) is the number of

banks with posterior zs (θ, p). This involves solving the following system

αs = max

⎧

⎨

⎩

0,min

⎧

⎨

⎩

ns (θ, p) ,
MBs

2γMC2
s

−
∑

t̸=s

MCt

MCs
αt

⎫

⎬

⎭

⎫

⎬

⎭

We can show how to solve this system by induction. Note that each equation in the system of first-order conditions

consists of the marginal benefit-to-cost ratio of supporting an additional bank in class s minus a term that is

common to all equations (2γ times the total fiscal cost). Note that αs = 0, ∀s cannot be a solution, as then all

first-order conditions would be ≥ 0. Since raising an arbitrary αs has the same negative impact in all inequalities,

the planner should first raise the αs1 such that

MBs1

MCs1

≥ max
t∈S

{

MBt

MCt

}

41



Thus setting

αs1 = max

{

0,min

{

ns1 (θ, p) ,
MBs1

2γMC2
s1

}}

Ifαs1 is not set to full capacity ns1 (θ, p), then the FOC holds with equality and it is therefore not optimal to set

any other αt, t ̸= s1. Otherwise, it is optimal to set the s2 that yields the second best marginal benefit-to-cost ratio,

MBs2

MCs2

≥ max
t∈S\{s1}

{

MBt

MCt

}

in which case the FOC implies

αs2 = max

{

0,min

{

ns2 (θ, p) ,
MBs2

2γMC2
s2

−
MCs1

MCs2

αs1

}}

We can continue until either the class that yields the worst marginal benefit-to-cost ratio, sN , is reached, or

αsi < nsi (θ, p) for some i ≤ N . This characterizes the optimal policy for an arbitrary number of signals.

Specializing to N = 2, the optimal policy follows as a corollary. It is straightforward to see that

MB1

MC1
≥

MB0

MC0

so that the marginal benefit-to-cost ratio for supporting banks that received the good signal is always greater than

the same ratio for banks that received the bad signal. Then, the optimal policy is characterized by

α1 = max

{

0,min

{

n1 (θ, p) ,
MB1

2γMC2
1

}}

and, if α1 < n1 (θ, p), α0 = 0. Otherwise, if all banks with the good signal are supported, the planner sets

α0 = max

{

0,min

{

n0 (θ, p) ,
MB0

2γMC2
0

−
MC1

MC0
α1

}}

Proof of Proposition 8

Proof. The proof is identical to the proof of Proposition 7. The first-order condition with respect to βs is given by

(1− δ)
[

zs (θ, p)A
g + (1− zs (θ, p))A

b
]

+ (1− zs (θ, p)) (qV − k)− 2γ
(

Ψd
)

(1− zs (θ, p)) (1− q)
(

D −Ab
)

≤ 0

Note that the marginal benefits and costs of supporting a class s are independent of the level of support for that
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class, βs. We can rewrite the first-order condition for the arbitrary class s as

MBs

MCs
− 2γ

∑

s

βsMCs ≤ 0

If there were no restrictions in the choice space, the planner would simply set

βs =
MBs

2γ (MCs)
2 −

∑

t̸=s

MCt

MCs
βt

However, the planner is restricted to βs ∈ [0, ns (θ, p)]. This amounts to solving the following system

βs = max

⎧

⎨

⎩

0,min

⎧

⎨

⎩

ns (θ, p) ,
MBs

2γ (MCs)
2 −

∑

t̸=s

MCt

MCs
βt

⎫

⎬

⎭

⎫

⎬

⎭

Now, consider βs = 0, ∀s. This cannot be a solution, as all FOC would then be positive. Since raising a single βs

has the same impact on all FOC, we conclude that it is optimal for the planner to first set the βs1 such that

MBs1

MCs1

≥ max
t∈S

{

MBt

MCt

}

This variable is set to either capacity, ns1 (θ, p), or to an optimal level in which no other control is set to a positive

value, that is

βs1 = max

{

0,min

{

ns1 (θ, p) ,
MBs1

2γ (MCs1)
2

}}

Now, if βs1 is not set at capacity, it is clearly not optimal to set any other βsi > 0, ∀i ̸= 1. Otherwise, it becomes

optimal to set the second best, s2, or
MBs2

MCs2

≥ max
t∈S\{s1}

{

MBt

MCt

}

that is,

βs2 = max

{

0,min

{

ns2 (θ, p) ,
MBs2

2γ (MCs2)
2 −

MCs1

MCs2

βs1

}}

This process continues until either sN , the worst category is reached, or βsi < nsi (θ, p) for some i ≤ N , resulting

in expression (15).

Proof of Corollary 9

Proof. Follows from application of Proposition 8 and noticing that

MB1

MC1
≥

MB0

MC0
⇔ (1− δ)Ag [z1 (θ, p)− z0 (θ, p)] ≥ 0

given that z1 (θ, p) ≥ z0 (θ, p) for any θ ∈ [0, 1] and p ≥ 1
2 .
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Proof of Proposition 10

Proof. The proof is very similar to that of Proposition 8, with the caveat that now we have potentially different

policies for each type of signal that banks receive. We can nevertheless write the system of first-order conditions

for problem (17) as
MBζs

s

MCζs
s

− 2γ
∑

s,ζ

MCζs
s ζs ≤ 0

for s ∈ {0, 1} and ζs ∈ {αs,βs}. The same logic as in the previous proposition applies, with the planner comparing

the ratio of marginal benefits to marginal costs of providing each type of support to each class of bank posteriors.

The only difference arises when the marginal benefit/cost ratio of αs exceeds that of βs and posterior class s has

suffered a run, zs (θ, p) < zR. In this case, the regulator cannot set αs > 0 without setting βs > 0. It is easy to see

that the regulator chooses to set βs = αs and simply solves

MBαs
s

MCαs
s

− 2γ
[

MC
ζs1
s1 ζs1 + . . .+MCαs

s αs +MCβs
s βs + . . .

]

= 0

Plugging βs = αs and solving for this variable yields

αsi = max

⎧

⎨

⎩

0,min

⎧

⎨

⎩

βsi ,
MB

αsi
si

2γMC
αsi
si

(

MC
αsi
si +MC

βsi
si

) −
∑

j<i

MC
ζsj
sj

(

MC
αsi
si +MC

βsi
si

)ζsj

⎫

⎬

⎭

⎫

⎬

⎭

αsi = βsi

Proof of Corollary 11

Proof. Follows immediately from noticing that

MBα1

1

MCα1

1

≥
MBα0

0

MCα0

0

and
MBβ1

1

MCβ1

1

≥
MBβ0

0

MCβ0

0

C General Derivation of the Welfare Function for θ ∈
[

θ, θ̄
]

Here we derive the welfare function, the government’s objective function, for the general case in which θ ∈
[

θ, θ̄
]

.

This extends the main text, that presents results for the particular case in which θ = zR and θ̄ = zI . It is easier to
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derive the welfare contribution by each of the different regions first:

1. If (R,R), which happens when θ ≤ θR1 (p), the welfare contribution is

δ
[

θAg + (1− θ)Ab
]

2. If (R,L), which happens when θ ∈
[

θR1 (p) ,min
{

θI1 (p) , θ
R
0 (p)

}]

, the welfare contribution is

θAg [p+ δ (1− p)] + (1− θ)Ab [1− p (1− δ)] + (1− θ) (qV − k) (1− p)

3. If (L,L), which happens when θ ∈
[

θR0 (p) , θI1 (p)
]

, the welfare contribution is

θAg + (1− θ)Ab + (1− θ) (qV − k)

4. If (R, I), which happens when θ ∈
[

θI1 (p) , θ
R
0 (p)

]

, the welfare contribution is

θAg [p+ δ (1− p)] + (1− θ)Ab [1− p (1− δ)] + (qV − k) [pθ + (1− p) (1− θ)]

5. If (L, I), which happens when θ ∈
[

max
{

θI1 (p) , θ
R
0 (p)

}

, θI0 (p)
]

, the welfare contribution is

θAg + (1− θ)Ab + (1− θ + pθ) (qV − k)

6. If (I, I), which happens when θ ≥ θI0 (p), the welfare contribution is

θAg + (1− θ)Ab + (qV − k)

Note then that the only potential point of discontinuity is p0, defined as

p0 : θR0 (p0) = θI1 (p0)

⇒ p0 =

√

zI (1− zR)
√

zI (1− zR) +
√

zR (1− zI)

45



For p ≤ p0 , when θR0 (p) ≤ θI1 (p), welfare is defined as

W (p)|p∈[ 12 ,p0] =

ˆ θR
1
(p)

θ

δ
[

θAg + (1− θ)Ab
]

dΠ (θ)

+

ˆ θR
0
(p)

θR
1
(p)

{

θAg [p+ δ (1− p)] + (1− θ)Ab [1− p (1− δ)] + (1− θ) (qV − k) (1− p)
}

dΠ (θ)

+

ˆ θI
1
(p)

θR
0
(p)

[

θAg + (1− θ)Ab + (1− θ) (qV − k)
]

dΠ (θ)

+

ˆ θI
0
(p)

θI
1
(p)

[

θAg + (1− θ)Ab + (1− θ + pθ) (qV − k)
]

dΠ (θ)

+

ˆ θ̄

θI
0
(p)

[

θAg + (1− θ)Ab + (qV − k)
]

dΠ (θ)

while for p ≥ p0, we have that θI1 (p) ≤ θR0 (p) and thus

W (p)|p∈[p0,1]
=

ˆ θR
1
(p)

θ

δ
[

θAg + (1− θ)Ab
]

dΠ (θ)

+

ˆ θI
1
(p)

θR
1
(p)

{

θAg [p+ δ (1− p)] + (1− θ)Ab [1− p (1− δ)] + (1− θ) (qV − k) (1− p)
}

dΠ (θ)

+

ˆ θR
0
(p)

θI
1
(p)

[

θAg [p+ δ (1− p)] + (1− θ)Ab [1− p (1− δ)] + (qV − k) [pθ + (1− p) (1− θ)]
]

dΠ (θ)

+

ˆ θI
0
(p)

θR
0
(p)

[

θAg + (1− θ)Ab + (1− θ + pθ) (qV − k)
]

dΠ (θ)

+

ˆ θ̄

θI
0
(p)

[

θAg + (1− θ)Ab + (qV − k)
]

dΠ (θ)

Some algebra allows us to conclude that the function is equal in both parts, and given by

W (p) =

ˆ θR
1
(p)

θ

δ
[

θAg + (1− θ)Ab
]

dΠ (θ) +

ˆ θ̄

θI
0
(p)

[

θAg + (1− θ)Ab + (qV − k)
]

dΠ (θ)

+Ag

[

ˆ θI
0
(p)

θR
1
(p)

θdΠ (θ)− (1− p) (1− δ)

ˆ θR
0
(p)

θR
1
(p)

θdΠ (θ)

]

+Ab

[

ˆ θI
0
(p)

θR
1
(p)

(1− θ) dΠ (θ)− p (1− δ)

ˆ θR
0
(p)

θR
1
(p)

(1− θ) dΠ (θ)

]

+(qV − k)

[

ˆ θI
0
(p)

θR
1
(p)

(1− θ) dΠ (θ) + p

ˆ θI
0
(p)

θI
1
(p)

θdΠ (θ)− p

ˆ θR
0
(p)

θR
1
(p)

(1− θ) dΠ (θ)

]
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or, rewriting,

W (p) = E [θ]Ag + (1− E [θ])Ab + (1− E [θ]) (qV − k)

− (1− δ)

{

Ag

[

ˆ θR
1
(p)

θ

θdΠ (θ) + (1− p)

ˆ θR
0
(p)

θR
1
(p)

θdΠ (θ)

]

+Ab

[

ˆ θR
1
(p)

θ

(1− θ) dΠ (θ) + p

ˆ θR
0
(p)

θR
1
(p)

(1− θ) dΠ (θ)

]}

+(qV − k)

{

ˆ θ̄

θI
0
(p)

θdΠ (θ)−

ˆ θR
1
(p)

θ

(1− θ) dΠ (θ) + p

[

ˆ θI
0
(p)

θI
1
(p)

θdΠ (θ)−

ˆ θR
0
(p)

θR
1
(p)

(1− θ) dΠ (θ)

]}

Note that the welfare function in Proposition 5 collapses to the one above under the assumption that θ = zR and

θ̄ = zI .

C.1 First-Order Condition with respect to p

The first-order condition with respect to p is given by

(qV − k)

{

ˆ θI
0
(p)

θI
1
(p)

θdΠ (θ)− (1− p) θI0 (p)π
(

θI0 (p)
) dθI0 (p)

dp
− pθI1 (p)π

(

θI1 (p)
) dθI1 (p)

dp

}

+(1− δ)Ag

[

ˆ θR
0
(p)

θR
1
(p)

θdΠ (θ)− (1− p) θR0 (p)π
(

θR0 (p)
) dθR0 (p)

dp
− pθR1 (p)π

(

θR1 (p)
) dθR1 (p)

dp

]

−
[

(1− δ)Ab + (qV − k)
]

[

ˆ θR
0
(p)

θR
1
(p)

(1− θ) dΠ (θ) + (1− p)
(

1− θR1 (p)
)

π
(

θR1 (p)
) dθR1 (p)

dp
+ p

(

1− θR0 (p)
)

π
(

θR0 (p)
) dθR0 (p)

dp

]

The first-order condition can be divided in three parts, one in each line. The first line is the benefit of disclosure

for unfreezing credit markets: by disclosing more, the planner is increasing investment by increasing the perceived

quality of good banks and making them more likely to invest. The second line is the benefit of disclosure for avoiding

runs on good banks: by disclosing their type more accurately, the planner prevents them from suffering runs. The

third and last term is the cost of runs over bad banks: by disclosing more, the planner is increasing the likelihood

that banks that receive the bad signal suffer a run (and these banks are more likely to be the bad ones). This has

two costs: the cost of liquidating legacy assets, and the opportunity cost of the investment opportunity (since bad

banks would undertake it anyway).

Notice that the FOC is potentially discontinuous at several points: as p ↑, regions may disappear and thresholds

become irrelevant. For example, for high enough p, θI0 (p) ≥ θ̄ and/or θR1 (p) ≤ θ, and all terms relating to these

thresholds (including their derivatives with respect to p) become zero (unless the density function is continuous

around the boundaries of the support). This implies that the first-order condition may have several roots that

correspond to local maxima and/or minima (since we have not shown that the objective function is concave - and,

indeed, it is not for some of our examples).

We can show that the first-order condition is exactly equal to zero for p = 1
2 . For p = 1, the FOC becomes

independent of p (since the welfare function is linear on p when (R, I) is the only possible outcome), and is given
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by

E [θ]−
(1− δ)Ab + (qV − k)

2 (qV − k) + (1− δ) (Ag +Ab)
(19)

so that another potential solution exists in the [p1, 1] interval, where p1 is defined as

p1 = inf
{

p|θI1 (p) ≤ θ and θR0 (p) ≥ θ̄
}

that is, the lowest value of p for which (R, I) becomes the only possible outcome. Depending on how 19 is signed,

which is a parametric restriction, either p = 1 or p = p1 are potential solutions (the former if the expression is

positive, and the latter if negative). Several other solutions can exist in the
(

1
2 , p1

)

interval. The optimal p can

then be found by evaluating the welfare function W (p) at each of these candidate solutions and choosing the one

that maximizes it.
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