Game Theoretic Modeling and Social Networks

Matthew O. Jackson

Nemmers Conference

Modeling Social Networks: Where we are and where to go

- Some empirical background
- What are the interesting questions?
- Random graph models
 - a few representative examples
 - strengths and weaknesses
- Strategic/Game Theoretic models
 - a few representative examples
 - strengths and weaknesses
- Hybrids and the future

Examples of Social and Economic Networks

PUCCI

1430's

The Structure of Romantic and Sexual Relations at "Jefferson High School"

Adamic – Stanford homepage links (largest component)

What do we know?

- Networks are prevalent
 - Job contact networks, crime, trade, politics, ...
- Network position and structure matters
 - rich sociology literature
 - Padgett example Medicis not the wealthiest nor the strongest politically, but the most central
- "Social" Networks have special characteristics
 - small worlds, degree distributions...

Networks in Labor Markets

- Myers and Shultz (1951)- textile workers:
 - 62% first job from contact
 - 23% by direct application
 - 15% by agency, ads, etc.
- Rees and Shultz (1970) Chicago market:
 - Typist 37.3%
 - Accountant 23.5%
 - Material handler 73.8%
 - Janitor 65.5%, Electrician 57.4%...
- Granovetter (1974), Corcoran et al. (1980),
 Topa (2001), Ioannides and Loury (2004) ...

Other Settings

- Networks and social interactions in crime:
 - Reiss (1980, 1988) 2/3 of criminals commit crimes with others
 - Glaeser, Sacerdote and Scheinkman (1996) social interaction important in petty crime, among youths, and in areas with less intact households
- Networks and Markets
 - Uzzi (1996) relation specific knowledge critical in garment industry
 - Weisbuch, Kirman, Herreiner (2000) repeated interactions in Marseille fish markets
- Social Insurance
 - Fafchamps and Lund (2000) risk-sharing in rural Phillipines
 - De Weerdt (200
- Sociology literature interlocking directorates, aids transmission, language, ...

Stylized Facts: Small diameter

- Milgram (1967) letter experiments
 - median 5 for the 25% that made it
- Actors in same movie (Kevin Bacon Oracle)
 - Watts and Strogatz (1998) mean 3.7
- Co-Authorship studies
 - Grossman (1999) Math mean 7.6, max 27,
 - Newman (2001) Physics mean 5.9, max 20
 - Goyal et al (2004) Economics mean 9.5, max 29
- WWW
 - Adamic, Pitkow (1999) mean 3.1 (85.4% possible of 50M pages)

High Clustering Coefficients - distinguishes "social" networks

- Watts and Strogatz (1998)
 - .79 for movie acting

- Newman (2001) co-authorship
 - .496 CS, .43 physics, .15 math, .07 biomed
- Adamic (1999)
 - .11 for web links (versus .0002 for random graph of same size and avg degree)

Distribution of links per node: Power Laws

- Plot of log(frequency) versus log(degree) is "approximately" linear in upper tail
- prob(degree) = c degree^{-a}
 - log[prob(degree)] = log[c] a log[degree]

- Fat tails compared to random network
- Related to other settings: Pareto (1896), Yule (1925), Zipf (1949), Simon (1955),

Degree – ND www Albert, Jeong, Barabasi (1999)

Co-Authorship Data, Newman and Grossman

number of collaborators k

Three Key Questions:

 How does network structure affect interaction and behavior?

- Which networks form?
 - Game theoretic reasoning
 - dynamic random models
- When do efficient networks form?
 - Intervention design incentives?

Random Graphs: Bernoulli (Erdos and Renyi (1960))

Rewired lattice (Watts and Strogatz (1999))

Preferential Attachment (Barabasi and Albert (2001))

Advantages of Random Graph Models

- Generate large networks with well identified properties
- Mimic real networks (at least in some characteristics)
- Tie a specific property to a specific process

What's Missing From Random Graph Models?

- The ``Why"?
 - Why this process? (lattice, preferential attach...)
- Implications of network structure: economic and social context or relevance?
 - welfare and how can it be improved...
- Careful Empirical Analysis
 - "Scale-Free" may not be
 - No fitting of models to data (models aren't rich enough to fit across applications)

Economic/Game Theoretic Models

- Welfare analysis agents get utility from networks
 - u_i(g)
 - Efficient Networks: argmax ∑ u_i(g)

Decision making agents form links and/or choose actions

Example: Connections Model

Jackson and Wolinsky (1996):

- benefit from a friend is δ
- benefit from a friend of a friend is δ^2 ,...
- cost of a link is c

- Pairwise Stable networks
 - u_i(g) ≥ u_i(g-ij) for each i and ij in g
 - u_i(g+ij) ≥ u_i(g) implies u_j(g+ij) ≥ u_j(g) for each ij not in g

Efficient Networks

- low cost: $c < \delta \delta^2$
 - complete network is efficient

- star network is efficient
 - minimal number of links to connect
 - connection at length 2 is more valuable than at 1 (δ -c< δ^2)

- high cost: $\delta + (n-2)\delta^2/2 < c$
 - empty network is efficient

Pairwise Stable Networks:

- low cost: $c < \delta \delta^2$
 - complete network is pairwise stable (and efficient)
- medium/low cost: $\delta \delta^2 < c < \delta$
 - star network is pairwise stable (and efficient)
 - others are also pairwise stable
- medium/high cost: $\delta < c < \delta + (n-2)\delta^2/2$
 - star network is not pairwise stable (no loose ends)
 - nonempty pairwise stable networks are over-connected and may include too few agents
- high cost: $\delta + (n-2)\delta^2/2 < c$
 - empty network is pairwise stable (and efficient)

Some Settings stable=efficient

Buyer-Seller Networks: Kranton-Minehart (2002):

- Sellers each with one identical object
- Buyers each desire one object, private valuation
- buyers choose to link to sellers at a cost
- sellers hold simultaneous ascending auctions

Example: values iid U[0,1], 1 seller

	Each buyer's expected utility	Seller's expected utility	Total social value
n buyers	1/[n(n+1)]	(n-1)/(n+1)	n/(n+1)
n+1 buyers	1/[(n+1)(n+2)]	n/(n+2)	(n+1)/(n+2)
change	-2/[n(n+1)(n+2)]	2/[(n+1)(n+2)]	1/[(n+1)(n+2)]

Transfers cannot always help

anonymity: same transfers

to identical players

balance: no transfers outside of component

value 12

value 13 efficient

value 12

Rich literature on such issues

- loosen anonymity (Dutta-Mutuswami (1997))
- directed networks (Bala-Goyal (2000), Dutta-Jackson (2000),...)
- bargaining when forming links (Currarini-Morelli(2000), Slikkervan den Nouweland (2000), Mutuswami-Winter(2002), Bloch-Jackson (2004))
- dynamic models (Aumann-Myerson (1988), Watts (2001), Jackson-Watts (2002ab), Goyal-Vega-Redondo (2004), Feri (2004), Lopez-Pintado (2004),...)
- farsighted models (Page-Wooders-Kamat (2003), Dutta-Ghosal-Ray (2003), Deroian (2003),...)
- allocating value (Myerson (1977), Meessen (1988), Borm-Owen-Tijs (1992), van den Nouweland (1993), Qin (1996), Jackson-Wolinsky (1996), Slikker (2000), Jackson (2005)...)
- modeling stability (Dutta-Mutuswami (1997), Jackson-van den Nouweland (2000), Gilles-Sarangi (2003ab), Calvo-Armengol and Ikilic (2004),...)
- experiments (Callander-Plott (2001), Corbae-Duffy (2001), Pantz-Zeigelmeyer (2003), Charness-Corominas-Bosch-Frechette (2001), Falk-Kosfeld (2003), ...)

Models of Networks in Context

- Calvo,
- crime networks (Glaeser-Sacerdote-Scheinkman (1996), Ballester, Calvo Zenou (2003),...)
- markets (Kirman (1997), Tesfatsion (1997), Weisbach-Kirman-Herreiner (2000), Kranton-Minehart (2002), Corominas-Bosch (2005), Wang-Watts (2002), Galeotti (2005), Kakade et al (2005)...)
- labor networks (Boorman (1975), Montgomery (1991, 1994), Calvo (2000), Arrow-Borzekowski (2002), Calvo-Jackson (2004,2005), Cahuc-Fontaine (2004), Currie...)
- insurance (Fafchamps-Lund (2000), DeWeerdt (2002), Bloch-Genicot-Ray (2004),...
- IO (Bloch (2001), Goyal-Moraga (2001), Goyal-Joshi (2001), Belleflamme-Bloch (2002), Billard-Bravard (2002), ...)
- international trade (Casella-Rauch (2001), Furusawa-Konishi (2003),
- public goods (Bramoulle-Kranton (2004)
- airlines (Starr-Stinchcombe (1992), Hendricks-Piccione-Tan (1995))
- network externalities in goods (Katz-Shapiro (1985), Economides (1989, 1991), Sharkey (1991)...)
- organization structure (Radner (), Radner-van Zandt (), Demange (2004)...)
- learning (Bala-Goyal (1998), Morris (2000), DeMarzo-Vayanos-Zweibel (2003), Gale-Kariv (2003), Choi-Gale-Kariv (2004),...)

Can economic models match observables?

Small worlds related to costs/benefits

- low costs to local links high clustering
- high value to distant connections low diameter

Geographic Connections (Johnson-Gilles (2000), Carayol-Roux (2003), Galeotti-Goyal-Kamphorst (2004), Jackson-Rogers (2004))

Advantages of an economic approach

- Payoffs allow for a welfare analysis
 - Identify tradeoffs incentives versus efficiency
- Tie the nature of externalities to network formation...

Put network structures in context

Account for (and explain) some observables

What's missing from Game theoretic models?

- Stark network structures emerge
 - need more heterogeneity
- over-emphasize choice versus chance determinants for *large* applications?

more on network structure and outcomes

Hybrid Models Needed

 Build richer models with random/heterogeneity

allow for welfare analysis

take model to data and fit observed networks

relate structure to outcomes

Example: can we learn about welfare from fitting networks? (w Rogers)

- Nodes are players
- Indexed by date of birth t={1,2,3,...}
- Find m_r other nodes at random
- Search their neighborhoods to find m_s more nodes
 - think of entering at a random web page and following its links
- Attach to a given node if net utility is positive
 - random utility or
 - increasing in node's degree

Expected increase in the in-degree of a node i

prob found at random

$$p(m_r/t + d_i [m_s/(t m)])$$
prob linked to given found
$$p(m_r/t + d_i [m_s/(t m)])$$

$$prob linked to for neighbors is entry point$$

m – average links/node, r – ratio random/search

The degree distribution of the mean field approximation to the process has a degree distribution having complementary cdf of

$$F(d) = 1 - (rm)^{1+r} (d + rm)^{-(1+r)}$$

Clustering is bounded away from 0 and decreasing in r

Varying the relative Random and Search probabilities

Fitting the Data

fix our m by direct calculation from data

- estimate r by fitting the degree distribution
- examine implied clustering coefficients and compare to data
- simulate the model to get accurate estimates for diameter

other characteristics?

Comparison: fitting the www data

Fitting WWW Data

Log Degree

Other Characteristics

- m=5 on average in data
- our estimate for r = .5 (R² is .97)
- average clustering .11 (at p=1/3)
 - data .11 Adamic
- total clustering goes to 0
 - data?
- diameter: bracketed 16 to 32
 - data 20

Fitting the Model to Data: co-author data of Goyal et al

Comparisons:

- Random/Search:
 - WWW links: r=.5
 - Small World Citation: r=.62
 - Econ co-authors: r=3.5
 - Ham radio: r=5
 - Prison Friendships: r=590
 - High School Romances: r=1000

Relating Network structure to outcomes

- Diffusion of viruses, information, behavior...
 - Bailey (1975), Pastor-Satorras and Vespignani (2001), Lopez-Pintado (2003), ..., SIS models

- Model relates network to outcomes
 - Higher r degree distribution SOSD lower r
 - utility concave in degree implies efficiency † r

SIS Model (Bailey (1975))

Nodes are infected or susceptible

 Probability that get infected is proportional to number of infected neighbors with rate v

get well randomly in any period at rate δ

Lopez-Pintado - infection rates

infection rate/recovery rate

Infection rates related to Network structure

Proposition: For any r' > r there exist λ and λ' such that

- If v/ δ<λ then the steady-state average infection rate is lower under r' than r.
- If v/ δ>λ' then the steady-state average infection rate is higher under r' than r.

Whither now?

- Bridging random/mechanical economic/strategic
- Networks in Applications
 - Diffusion of information, technology

 relate to network structure
 - Labor, mobility, voting, trade, collaboration, crime, www, ...
- Empirical/Experimental
 - case studies lack economic variables, tie networks to outcomes,
 - enrich modeling of social interactions from a structural perspective
- Furthering game theoretic modeling, and random modeling
- Foundations and Tools
 – centrality, power, allocation rules, community structures, ...

Connection to Information?

 Less random is more a like a ``hub and spoke'' network

 applications: infectious diseases, computer viruses, job information and employment, consumer behavior, social mobility...