
Dynamic Adverse Selection:

A Theory of Illiquidity, Fire Sales, and Flight to Quality∗

Veronica Guerrieri Robert Shimer

April 14, 2013

Abstract

We develop a dynamic equilibrium model of asset markets with adverse selection.

There exists a unique equilibrium where better quality assets trade at higher prices

but with a lower price-dividend ratio in less liquid markets. Sellers of high-quality

assets signal their quality by accepting a lower trading probability. We show how

the distribution of sellers’ private information affects an asset’s price and liquidity,

how a change in that distribution can cause a fire sale and flight-to-quality, and how

asset purchase and subsidy programs may raise prices and liquidity and reverse the

flight-to-quality.
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1 Introduction

This paper develops a dynamic equilibrium model of asset markets with adverse selection.

The owners of heterogeneous assets are privately informed about the quality of their assets.

Sellers set prices for their assets recognizing that sales may be rationed at high prices. Buyers

set prices recognizing that the quality of available assets may depend on the price selected.

In equilibrium, sellers of high quality assets are willing to set a high price despite the low sale

probability because the continuation value from failing to sell a high quality asset is high;

conversely, sellers of low quality assets opt for a low price. Buyers are indifferent between

paying a low price for a low quality asset and a high price for a high quality asset.

We prove these results in a deliberately stylized dynamic general equilibrium framework.

Assets are perfectly durable and pay a constant dividend each period, some amount of a

perfectly perishable consumption good. Better quality assets pay a higher dividend but only

the asset’s current owner observes the dividend. This is the source of private information and

the root of the adverse selection problem, as in Akerlof (1970). The only permissible trades

are between the consumption good and the asset. Individuals are risk-neutral and have

a discount factor that changes over time, independently across individuals, creating gains

from trade. Finally, discount factors are observable, which ensures that patient individuals

never sell assets since there are no gains from trade. We believe this framework is useful for

capturing our main idea that illiquidity may separate high and low quality assets in markets

with private information. The dynamic aspects of the model are important because buyers’

willingness to pay for an asset depends on the possibility of resale, which creates a liquidity

premium in asset prices.

We define two equilibrium concepts in this framework and prove that both are unique.

The first is a partial equilibrium, which takes as given the value of a unit of the consumption

good to the buyer and ignores the market clearing condition that demand and supply of the

consumption good are equal. The second is a competitive equilibrium in which the value of

the consumption good is endogenous and the market for the consumption good clears. Key

to both equilibrium concepts is that buyers’ beliefs about the quality of asset purchased at a

particular price must respect sellers’ incentive to sell at that price. More precisely, if buyers

anticipate getting a particular quality asset with positive probability at a given price, it must

be weakly optimal for a seller to offer that quality asset at that price.

Although our model is abstract, we believe it may be useful for understanding and ulti-

mately quantifying the importance of adverse selection for market liquidity. To be concrete,

consider the market for AAA-rated private-label mortgage-backed securities (MBS) from

2005 to 2008. At the start of this period, market participants viewed these securities as a
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safe investment, nearly indistinguishable from a Treasury bond. By 2007, investors started

to recognize that some of these securities were likely to pay less than face value. Moreover, it

was difficult to determine the exact assets that backed each individual security. Anticipating

that she might later have to sell it, the owner of an asset had an incentive to learn its quality.

On the other hand, it may not have been profitable for potential buyers to investigate the

quality of all possible assets because they did not know which assets would later be for sale.

Although we do not model the process of learning about an asset’s quality, we view this

world with private information and adverse selection as the starting point for our model.

Our model predicts that a seller should always be able to sell an asset at a sufficiently

low price. However, the owner of a high quality private-label MBS will choose to hold out for

a higher price, despite the shortage of buyers at that price. Moreover, the price that buyers

are willing to pay for a high quality security is depressed because the market is less liquid.

That is, even if a buyer somehow understood that a particular asset would pay the promised

dividends with certainty, he would pay less for it because he would anticipate having trouble

reselling it to future buyers who don’t have his information. Illiquidity therefore further

depresses asset prices. For this reason, we view an event where sellers start to learn the

quality of the assets in their portfolio as a fire sale.1 During a fire sale, buyers still would

like to reinvest their income in some asset, and so the decline in the demand for private-label

MBS will boost the demand for other assets that do not suffer from an adverse selection

problem, such as Treasury bonds. Thus our model generates a flight-to-quality episode,

defined as a decrease in the volume of transactions in the security with a fire sale and an

increase in the volume and price of alternative investment vehicles.

We demonstrate these ideas formally through a sequence of propositions that derive

properties of the partial and competitive equilibrium. First, we consider two types of assets.

Both buyers and sellers know an asset’s type, but only the seller knows its quality. For

example, one type of asset may be an agency MBS and another type may be a private-

label MBS. Buyers can distinguish between these broad classes of assets, but a seller may

have some private information about the particular security that he owns. We first show

that a proportionate difference in the assets’ payoffs is associated with a proportionate

difference in their price and no difference in their liquidity (Proposition 4). This suggests

1For a detailed description of the the early stages of the financial crisis and an analysis of the source of
the adverse selection problem, see Gorton (2008). This view of the crisis is consistent with Dang, Gorton
and Holmström (2009), who conclude, “Systemic crises concern debt. The crisis that can occur with debt
is due to the fact that the debt is not riskless. A bad enough shock can cause information insensitive debt
to become information sensitive, make the production of private information profitable, and trigger adverse
selection. Instead of trading at the new and lower expected value of the debt given the shock, agents trade
much less than they could or even not at all. There is a collapse in trade. The onset of adverse selection is
the crisis.”
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that liquidity is instead related to the second moment of asset’s quality, i.e. to the extent

of the private information problem. A natural conjecture is that if the private information

problem is more severe for private-label MBS than agency MBS, in the sense of sense of

second order stochastic dominance, then the average price, liquidity (fraction of the asset

sold each period), and volume (value of sales in units of the consumption good) in the private-

label will be lower. We show that while this is true in some special cases (Proposition 5), it

is not generally true (Proposition 6). In particular, if the dividends from the two assets have

the same support and the same expected value, then private-label MBS will have a higher

average price, liquidity, and volume despite owners having superior information. This leads

to one of our key insights: the extent of the adverse selection problem depends critically on

the support of the dividend distribution. A reduction in the lower bound of the support has

a profound impact on prices, liquidity, and volume, even if the distribution of asset quality

is otherwise nearly unchanged.

Second, we turn to fire sales and flight-to-quality. Rather than comparing two types of

assets with different quality distributions, we ask what happens if there is a change in the

quality of one type of asset, holding fixed the quality distribution of other assets. In partial

equilibrium, this question is virtually the same as the comparison in the previous paragraph

across assets of different quality, but a change in the distribution of an asset’s quality will

also have general equilibrium effects. Consider any change in the quality distribution of

one type of asset that in partial equilibrium reduces the volume of trade in that asset; we

prove that in a competitive equilibrium, it must raise the price, liquidity, and volume of all

other assets (Proposition 7). Putting the two sets of results together, we obtain a picture of

a fire sale causing a flight-to-quality. For example, a worsening of the private information

problem in the market for private-label MBS, such as a reduction in the lower bound of the

support of the dividend distribution, causes an increase in the price and volume of other

assets, such as agency MBS and U.S. Treasury bonds. Intuitively, investors who used to

purchase private-label MBS direct their funds towards other opportunities, raising prices

and moderating adverse selection problems in those markets.

Third, we examine how two realistic government interventions affect the market for a

particular type of asset. The first is an asset purchase program. The government—or more

generally, any player with deep pockets—stands ready to purchase any amount of that type

of asset at a specified price. We prove that any asset which, if there were no resale problem

would be worth less than that price, is sold to the government, so the government effectively

purchases the lowest quality assets. This raises the lower bound on the support of the assets

circulating in the private market, which in partial equilibrium raises the price and liquidity

of those assets (Propositions 8 and 9). In other words, by ridding the market of the worst
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assets, an asset purchase program can improve the functioning of the market for those assets

that remain in private hands. The general equilibrium impact of the program is ambiguous,

since it depends on how the government funds the purchases and what the government does

with the dividends from the assets that it purchases. But in principle an asset purchase

program can also undo a flight-to-quality episode.

We also consider an asset subsidy program. We now assume that the government subsi-

dizes the purchase of a type of asset at a low price, with the subsidy phasing out as the price

increases. We prove that in partial equilibrium, the subsidy program raises the price and

liquidity of all assets of that type, including assets that are not subsidized (Propositions 10

and 11). The subsidy program effectively relaxes incentive constraints, making it cheaper

for the owner of a high quality asset to signal its quality. This raises the asset’s liquidity

and hence buyers’ valuations. Once again, general equilibrium impacts are ambiguous, since

they depend on how the government funds the subsidies.

Finally, we show that the extent of illiquidity does not hinge on assumptions about the

frequency of trading opportunities. Even in the limit with continuous trading opportunities,

there are not enough buyers in the market for high quality assets and so it takes a real

amount of calendar time to sell at a high price. From the perspective of a seller, selling

opportunities arrive at a Poisson arrival rate, which sellers wish would be higher. While this

may seem similar to the predictions of search theoretic models of illiquidity in asset markets

(e.g. Duffie, Gârleanu and Pedersen, 2005; Weill, 2008; Lagos and Rocheteau, 2009), there

are important differences. For example, the difficulty of finding a buyer depends primarily

on the extent of private information rather than on the availability of trading opportunities.

This is because real trading delays are essential for separating the good assets from the bad

ones. Of course, in reality adverse selection and search frictions may coexist in a market,

and it is indeed straightforward to introduce search into our framework (Guerrieri, Shimer

and Wright, 2010; Chang, 2011).

Our model has at least two robust empirical predictions which distinguish it from most

of the existing literature on adverse selection. First, we predict that the left tail of the

quality distribution is critical for asset prices and liquidity. For example, there is no trade in

any type of asset for which the support of the quality distribution includes a zero dividend.

This sensitivity recalls the behavior of markets in the presence of Knightian uncertainty,

in which traders behave as if they anticipate purchasing the worst possible asset (Rigotti

and Shannon, 2005; Caballero and Krishnamurthy, 2008; Routledge and Zin, 2009; Easley

and OHara, 2010). The emergence of Knightian uncertainty can similarly cause a collapse

in asset prices and trading volumes, although the source of this fragility is very different

in our environment. Since in practice the extent of asymmetric information may be small,
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this observation is important for understanding why asymmetric information matters for

equilibrium outcomes.

Second, we predict that sellers are rationed in equilibrium, and would like to sell more

at their chosen price. An alternative implementation of our equilibrium would have sellers

retain fractional ownership of their assets in order to signal the quality, as in DeMarzo

and Duffie (1999). Under this interpretation, a seller who wants to sell a larger fraction of

her assets would be forced to accept a lower price, a phenomenon that is usually seen as

symptomatic of price pressure in an imperfectly competitive market. We offer an alternative

interpretation based on the idea that the price acts as a signal.

Whether adverse selection is important for financial markets is ultimately an empirical

question. In practice, it is difficult to measure the extent of adverse selection in any market

simply because the data demands are acute. In one of the more successful efforts, Finkel-

stein and Poterba (2004) find a correlation between characteristics of annuity contracts and

characteristics of annuity buyers that are unobserved by annuity sellers. Our model would

suggest a similar test in securities markets, a correlation between the frequency that an asset

is resold and the asset’s terminal payoff conditional on observable characteristics. While our

reading of the existing evidence, e.g. Downing, Jaffee and Wallace (2009), suggests that the

extent of adverse selection in asset markets is small but positive, it is worth stressing that

even a small amount of left tail risk can generate substantial illiquidity in our environment.

Another argument against the relevance of adverse selection in secondary markets is

that neither buyers nor sellers knew what they were trading. We are unaware of any direct

evidence for (or against) private information in the secondary market, but Arora, Barak,

Brunnermeier and Ge (2011) claim that the structure of collateralized debt obligations made

it computationally infeasible for anyone but the original issuer to measure the quality of the

underlying assets. This is important since in our framework, symmetric lack of information

is not a barrier to trade. But our model gives us a reason to believe that adverse selection

may still be a problem, despite the computational complexity of unraveling the underlying

securities. In equilibrium, prices transmit information from sellers to buyers. Even if the

owner of an asset cannot observe an asset’s dividend, he knows what he paid for the asset

and therefore he knows what value the seller assigned to the asset. Here our model again

gives a different perspective from models in which all sales occur at a single price.

A third argument against adverse selection is that markets find solutions to these sorts

of problems. One is reputation sustained through repeated interactions between buyers

and sellers. In our model, all trade is anonymous so there is no possibility of sustaining a

reputation for delivering only high quality assets. We view this as a reasonable description of

a crisis episode, even if it is a poor description of the behavior of large financial intermediaries
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during normal times. When facing solvency constraints, sellers may be willing to sacrifice

their long-run reputation for the short-run benefits of liquidating their portfolio. Another

market solution is paying a third party to evaluate the quality of assets. Indeed, this is one

role that rating agencies are supposed to play. But when a crisis is triggered by the realization

that rating agencies had incorrectly assessed risks, there may be no one positioned to offer

credible valuation assessments.

A large theoretical literature argues that adverse selection may be important in financial

markets. Most papers look at a market structure in which all trades must take place at

one price and so generate endogenous illiquidity because sellers may choose not to sell high

quality assets if the equilibrium price is too low (e.g. Eisfeldt, 2004; Daley and Green, 2012;

Tirole, 2012; Kurlat, Forthcoming; Chari, Shourideh and Zetlin-Jones, 2010). The nature

of illiquidity is different in our model: sellers try to sell all their assets at optimally chosen

prices, recognizing that sales will be rationed at most prices. This distinction is important for

both of our robust empirical predictions. A one price equilibrium is not particularly sensitive

to the left tail of the dividend distribution and instead typically requires large changes in

the distribution of private information in order to generate large movements in prices and

liquidity.2 And a one price equilibrium cannot explain why a seller would generically choose

only to sell fractional ownership in an asset. In any case, these papers typically have a

different objective than ours, for example analyzing optimal policy.

A third approach to adverse selection assumes random matching between uninformed

buyers and informed sellers and allows the buyers to make take-it-or-leave-it offers to sellers

(Inderst, 2005; Chiu and Koeppl, 2011; Camargo and Lester, 2012). Some buyers offer

higher prices than others and the owners of high quality assets only sell when they are

offered a high price. This implies that the distribution of asset quality across sellers is

endogenous, which feeds back into the adverse selection problem. Our approach is different

in that it does not depend on an endogenous composition of asset quality. We highlight this

by assuming in most of our paper that the fraction of individuals who are sellers and the

asset quality distribution owned by those individuals are constant and exogenous because

discount factors are independent over time. These papers also do not explore our first robust

empirical prediction about the criticality of the left tail of the asset distribution, perhaps

because tractability dictates that they focus on environments with only two quality levels. In

any case, we would not expect the same tail properties to be relevant in these environments.

Nor do these papers find a role for buyers to offer sellers fractional asset purchases, as in

DeMarzo and Duffie (1999). Thus they do not uncover our second robust prediction that

2The existing literature has not explored this issue in much detail, in part because much of the literature
assumes that there are only two quality levels.

6



sellers are rationed at the equilibrium price. Again, these papers’ objective is different, often

focusing on optimal policy.

This paper builds on our previous work with Randall Wright (Guerrieri, Shimer and

Wright, 2010). It also complements a contemporaneous paper by Chang (2011). There are

a number of small differences between that paper and this one. For example, we look at an

environment in which individuals may later want to resell assets that they purchase today.

This means that buyers care about the liquidity of the asset and so liquidity affects the

equilibrium price. It follows that interventions in the market which boost liquidity may also

raise asset prices. We also focus explicitly on a general equilibrium environment, allowing

for the possibility that buyers may be driven to a corner in which they do not consume

anything. This is essential for our model to generate a flight-to-quality. As we discuss in the

conclusion, it is also essential to a version model in which individuals’ discount factors are

unobservable. Still, both papers leverage our earlier research to study separating equilibria

in a dynamic adverse selection environment.

This paper proceeds as follows. Section 2 describes our basic model. Section 3 describes

the individual’s problem and expresses it recursively. Section 4 defines partial and competi-

tive equilibrium and establishes existence and uniqueness. Section 5 examines what features

of the distribution of private information makes one type of asset more liquid and more

expensive than another. That section also explores how a change in the extent of private

information can cause a fire sale and flight-to-quality. Section 6 explores the impact of two

potential policy interventions, a public asset purchase program and a subsidy to purchasing

assets that decreases with the purchase price. Section 7 extends the model to have persistent

preference shocks and shows that the frictions survive in the continuous time limit. Section 8

concludes.

2 Model

There is a unit measure of risk-neutral individuals. In each period t, they can be in one

of two states, st ∈ {l, h}, which determines their discount factor βst between periods t and

t + 1. We assume 0 < βl < βh < 1. The preference shock is independent across individuals,

which potentially allows for gains from trade. For now we assume that the preference shock

is also independent over time. Thus πs denotes the probability that an individual is in state

s ∈ {l, h} in any period, and it is also the fraction of individuals who are in state s in

any period. For any particular individual, let st ≡ {s0, . . . , st} denote the history of states

through period t.

There is a finite number of different quality levels, indicated by j ∈ {1, . . . , J}. Assets

7



are perfectly durable and their supply is fixed; let Kj denote the measure of quality j assets

in the economy. Each quality j asset produces δj units of a homogeneous, nondurable

consumption good each period, and so aggregate consumption
∑J

j=1 δjKj is fixed. Without

loss of generality, assume that higher quality assets produce more of the consumption good,

0 ≤ δ1 < · · · < δJ . The assumption that there is a finite number of qualities simplifies our

notation and exposition. In Section 5.1 we describe the equilibrium with a continuum of

assets.

We are interested in how a market economy allocates consumption across individuals.

For the next three sections, we refer to the assets as “trees” and the consumption good as

“fruit.” The timing of events within period t is as follows:

1. each individual i owns a vector {ki,j}
J
j=1 of trees which produce fruit;

2. each individual’s discount factor between periods t and t+ 1 is realized;

3. individuals trade trees for fruit in a competitive market;

4. individuals consume the fruit that they hold.

We require that each individual’s consumption and holdings of each quality of tree are

nonnegative in every period and we do not allow any other trades, e.g. contingent claims

against shocks to the discount factor. In addition, we assume that only the owner of a

tree can observe its quality, creating an adverse selection problem; however, we assume

that individuals’ discount factors are observable. Key to our equilibrium concept, which we

discuss below, is that the buyer of a tree may be able to infer its quality from the price at

which it is sold.

With observable discount factors, a version the Milgrom and Stokey (1982) “no trade

theorem” implies that high discount factor individuals never sell trees and low discount factor

individuals never buy trees in any equilibrium despite the presence of private information.3

For this reason, we refer to individuals with low discount factors as “sellers” and those with

high discount factors as “buyers.” Trade in trees for fruit therefore transfers consumption

from patient individuals to impatient ones.

We now describe the market structure more precisely. After trees have borne fruit, a

continuum of markets distinguished by their positive price p ∈ R+ may open up. Each buyer

may take his fruit to any market (or combination of markets), attempting to purchase trees

3This is not necessarily true with unobservable discount factors. In the conclusion we discuss such
an environment and argue that despite this, it may still be the case that in equilibrium high discount
factor individuals do not want to sell trees and low discount factor individuals do not want to buy trees.
Our equilibrium is therefore unaffected by this additional source of private information for an open set of
parameter values.
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in that market. Each seller may take his trees to any market (or combination of markets)

attempting to sell trees in that market. However, each piece of fruit and each tree may only

be brought to one market.

All individuals have rational beliefs about the ratio of buyers to sellers in all markets.

Let Θ(p) denote the ratio of the amount of fruit brought by buyers to a market p, relative

to the cost of purchasing all the trees in that market at a price p. If Θ(p) < 1, there is not

enough fruit to purchase all the trees offered for sale in the market, while if Θ(p) > 1, there

is more than enough. A seller believes that if he brings a tree to a market p, it will sell with

probability min{Θ(p), 1}. That is, if there are excess trees in the market, the seller believes

that his sale may be rationed. Likewise, a buyer who brings p units of fruit to market p

believes that he will buy a tree with probability min{Θ(p)−1, 1}. If there is excess fruit in

the market, he may be rationed. A seller who is rationed keeps his tree until the following

period, while a buyer who is rationed must eat his fruit.

Individuals also have rational beliefs about the quality of tree sold in each market. Let

Γ(p) ≡ {γj(p)}
J
j=1 ∈ ∆J denote the probability distribution over trees available for sale in

a market p, where ∆J is the J-dimensional unit simplex.4 Buyers expect that, conditional

on buying a tree at a price p, it will be a quality j tree with probability γj(p). Buyers only

learn the quality of the tree that they have purchased after giving up their fruit. They have

no recourse if unsatisfied with the quality.

Although trade does not happen at every price p, the functions Θ and Γ are not arbitrary.

Instead, if Θ(p) < ∞ (the buyer-seller ratio is finite) and γj(p) > 0 (a positive fraction of the

trees for sale are of quality j), sellers must find it weakly optimal to sell quality j trees at

price p. Without this restriction on beliefs, there would be equilibria in which, for example,

no one pays a high price for a tree because everyone believes that they will only purchase

low quality trees at that price. We define equilibrium precisely in Section 4 below.

We assume throughout this paper that the endogenous functions Θ and Γ are constant

over time, so the environment is in a sense stationary. This restriction seems natural to us,

and indeed we are able to prove existence and uniqueness of an equilibrium with this property.

Key to this result is that, although the distribution of tree holdings across individuals evolves

over time, the fraction of quality j trees held by individuals with a high discount factor is

necessarily a constant πh at the start of every period because preferences are independently

and identically distributed over time.

4That is, γj(p) ≥ 0 for all j and
∑J

j=1
γj(p) = 1.
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3 Individual’s Problem

Each individual starts off at time 0 with some vector of tree holdings {kj}
J
j=1 and preference

state s ∈ {l, h}. In each subsequent period t and history of preference shocks st, he decides

how many trees to attempt to buy or sell at every possible price p, recognizing that he may

be rationed at some prices and that the price may affect the quality of the trees that he

buys. Let V ∗
s ({kj}) denote the supremum of the individual’s expected lifetime utility over

feasible policies, given initial preferences s and tree holdings {kj}. In an online Appendix,

we characterize this value explicitly and prove that it is linear in tree holdings: V ∗
s ({kj}) ≡

∑J
j=1 vs,jkj for some positive numbers vs,j. This is a consequence of the linearity of both the

individual’s objective function and the constraints that he faces.

In addition, we prove that the marginal value of tree holdings satisfies relatively simple

recursive problems. A seller solves

vl,j = δj +max
p∈R+

(

min{Θ(p), 1}p+ (1−min{Θ(p), 1})βlv̄j
)

, (1)

where

v̄j ≡ πhvh,j + πlvl,j. (2)

The individual receives a dividend of δj units of fruit from the tree and also gets p units of

fruit if he manages to sell the tree at the chosen price p. Otherwise he keeps the tree until

the following period. Note that there is no loss of generality in assuming that a seller always

tries to sell all his trees, since he can always offer them at a high price such that this is

optimal, p > βlv̄j . Of course, at such a high price, he may be unable to sell it, Θ(p) = 0, in

which case the outcome is the same as holding onto the tree.

Similarly, a buyer solves

vh,j = max
p∈R+

(

min{Θ(p)−1, 1}
δj
p
βh

∑

j′

γj′(p)v̄j′ + (1−min{Θ(p)−1, 1})δj

)

+ βhv̄j .

A quality j tree delivers δj of fruit, which the buyer uses in an attempt to purchase trees at

an optimally chosen price p. If he succeeds, he buys δj/p trees of unknown quality, j′ with

probability γj′(p), while if he fails he consumes the fruit. Finally, he gets the continuation

value of the tree in the next period. Again, note that a buyer always finds it weakly optimal

to attempt to purchase a tree at a sufficiently low price p, rather than simply consuming the

fruit without attempting to purchase a tree. We therefore do not explicitly incorporate this

last option in the value function.

Since the maximand is multiplicative in δj , we can equivalently write the buyer’s value
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function as

vh,j = δjλ+ βhv̄j, (3)

where

λ ≡ max
p

(

min{Θ(p)−1, 1}
βh

∑J

j=1 γj(p)v̄j

p
+
(

1−min{Θ(p)−1, 1})

)

. (4)

The variable λ is the endogenous value of a unit of fruit to a buyer, independent of the quality

of tree that produced the fruit. If λ = 1, a unit of fruit is simply worth its consumption

value, and so buyers find it weakly optimal to consume their fruit. But we may have λ > 1

in equilibrium, so buyers strictly prefer to use their fruit to purchase trees.

Proposition 1 Let {vs,j}, {v̄j}, and λ be positive-valued numbers that solve the Bellman

equations (1)–(4) for s = l, h. Then V ∗
s ({kj}) ≡

∑J

j=1 vs,jkj for all {kj}.

The proof is in an online appendix. Note that for some choices of the functions Θ and Γ,

there is no positive-valued solution to the Bellman equations. In this case, the price of trees

is so low that it is possible for an individual to obtain unbounded utility and there is no

solution to the individual’s problem. Not surprisingly, this cannot be the case in equilibrium.

4 Equilibrium

4.1 Partial Equilibrium

We are now ready to define equilibrium. We do so in two steps. First, we define an equilib-

rium where the buyer’s value of fruit λ is fixed, which we call “partial equilibrium”. This

definition is a natural dynamic extension to the definition of equilibrium in Guerrieri, Shimer

and Wright (2010).5 Then, we turn to the complete definition of a competitive equilibrium,

where the value of λ is endogenous and ensures that the fruit market clears.

Definition 1 A partial equilibrium for fixed λ ≥ 1 is a pair of vectors {vh,j} ∈ R
J
+ and

{vl,j} ∈ R
J
+, functions Θ : R+ 7→ [0,∞] and Γ : R+ 7→ ∆J , and a nondecreasing function

F : R+ 7→ [0, 1] with support P satisfying the following conditions:

1. Sellers’ Optimality: for all j ∈ {1, . . . , J}, vl,j solves (1) where v̄j is defined in (2);

2. Equilibrium Beliefs: for all j ∈ {1, . . . , J} and for all p with Θ(p) < ∞ and γj(p) > 0,

p solves the maximization problem on the right-hand side of equation (1);

5The proof of existence and uniqueness of equilibrium in Guerrieri, Shimer and Wright (2010) uses a
sorting assumption that is not satisfied in our environment. For that reason, we cannot directly apply our
earlier proofs.
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3. Buyers’ Optimality: for all j ∈ {1, . . . , J}, vh,j solves (3) where λ is defined in (4) and

v̄j in (2);

4. Active Markets: p ∈ P only if it solves the maximization problem on the right-hand

side of equation (4);

5. Consistency of Supply with Beliefs: for all j ∈ {1, . . . , J},

Kj
∑

j′ Kj′
=

∫

P

γj(p)dF (p).

Sellers’ Optimality requires that sellers choose an optimal price for selling each quality

tree, given the ease of trade. Equilibrium Beliefs imposes that if individuals expect some

quality j trees to be for sale at price p, it must be weakly optimal to sell quality j trees

at that price.6 Buyers’ Optimality states that buyers choose an optimal price to buy trees,

given the ease of trade and the composition of trees for sale at each price. Active Markets

imposes that if there is trade at a price p, this must be an optimal price for buying trees.

Finally, Consistency of Supply with Beliefs imposes that the share of sellers’ trees that are

of quality j is equal to the fraction of quality j trees among those offered for sale, where F

denotes the fraction of trees that are offered for sale at a price less than or equal to p.

We characterize partial equilibria using a sequence of constrained optimization problems:

Definition 2 For given λ, a solution to problem (Pj) is a vector (vl,j, v̄j, θj , pj) that solves

the following Bellman equation

vl,j = δj +max
p,θ

(

min{θ, 1}p+ (1−min{θ, 1})βlv̄j
)

s.t. λ ≤ min{θ−1, 1}
βhv̄j
p

+
(

1−min{θ−1, 1}
)

, (5)

and vl,j′ ≥ δj′ +min{θ, 1}p+ (1−min{θ, 1})βlv̄j′ for all j′ < j (6)

with

v̄j = πh(δjλ+ βhv̄j) + πlvl,j.

We are interested in solving the sequence of problems (P ) ≡ {(P1), . . . , (PJ)}. To do so,

start with Problem (P1). Constraint (6) disappears from Problem (P1), and so we can solve

directly for vl,1 and v̄1, as well as the optimal policy p1 and θ1. Standard arguments ensure

that the maximized value is unique if λ ≥ 1. In general, for Problem (Pj), constraints (5)

6This condition rules out many other allocations that we are believe are unreasonable. See Guerrieri,
Shimer and Wright (2010) for a further discussion of our equilibrium concept.
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and (6) for j′ = j − 1 bind, which uniquely determines pj and θj as well as vl,j and v̄j given

vl,j−1 and v̄j−1. Proceeding by induction yields the following Lemma:

Lemma 1 For fixed λ ∈ [1, βh/βl], the solution to the sequence of problem (P ) has vl,j+1 >

vl,j, v̄j+1 > v̄j, pj+1 > pj, and θj+1 ≤ min{θj , 1} for all j < J . It is the unique such solution

to the system of equations

λpj = βhv̄j for all j, (7)

vl,j = δj +min{θj , 1}pj + (1−min{θj, 1})βlv̄j for all j, (8)

v̄j = πh(δjλ+ βhv̄j) + πlvl,j for all j, (9)

vl,j−1 = δj−1 + θjpj + (1− θj)βlv̄j−1 for all j > 1, (10)

and θ1 ≥ 1 if λ = 1, θ1 ≤ 1 if λ = βh/βl, and θ1 = 1 otherwise.

Condition (7) is the buyer’s indifference condition when the value of fruit is λ. Condition (8)

is the value function of a seller and condition (9) is the value of individual before the re-

alization of his preference shock. Condition (10) is the binding local downward incentive

constraint; all other incentive constraints are slack.

If δ1 > 0 and λ < βh/βl, this defines θj > 0 for all j; otherwise θj = 0 for all j ≥ 2. We

focus on values of λ between 1 and βh/βl because these are the relevant ones for equilibrium.

One could, however, also characterize the solution to problem (P ) for λ > βh/βl; it would

have θj = 0 for all j.

Proposition 2 Fix λ ∈ [1, βh/βl]. There exists a partial equilibrium. Any solution to

problem (P ) is a partial equilibrium and any partial equilibrium solves problem (P ). More

precisely:

• Existence: Take any {vl,j, v̄j, θj , pj} that solves problem (P ). Then there exists a partial

equilibrium ({vh,j}, {vl,j},Θ,Γ, F ) where Θ(pj) = θj, γj(pj) = 1, vh,j = δjλ+βhv̄j, and

dF (pj) = Kj/
∑

j′ Kj′.

• Uniqueness: Take any partial equilibrium ({vh,j}, {vl,j},Θ,Γ, F ). For all j, there exists

a pj ∈ P with γj(pj) > 0. If also Θ(pj) > 0, then (vl,j, v̄j,Θ(pj), pj) solves problem

(Pj).

The proof in the appendix gives a complete characterization of the partial equilibrium,

including the entire functions Θ and Γ. Since we proved in Lemma 1 that the solution to

problem (P ) is unique, except possibly for the value of θ1, this essentially proves uniqueness

of the partial equilibrium.
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Figure 1: Illustration of problem (P) and partial equilibrium.

Figure 1 illustrates a partial equilibrium for the case with J = 2.7 The two upward-

sloping curves indicate pairs of prices and resale probabilities such that buyers are willing to

purchase each of the trees when the value of a unit of fruit is λ. A buyer is willing to pay a

higher price for a tree if he anticipates being able to resell it with a higher probability when

he becomes a seller at some future date. In terms of problem (P), these curves describe the

relationship between θj and pj implied by equations (7)–(9) conditional on λ. This recognizes

that the continuation value v̄j accounts for the resaleability of the tree.

The two downward-sloping curves are the indifference curves for the seller of each of the

trees evaluated at their equilibrium values. Each of them is downward sloping because a

seller is willing to accept a lower sale probability if he receives a higher price conditional on

a sale. The seller of tree j = 1 is not constrained by worse trees and so in equilibrium is able

to sell the tree with probability 1. The indifference curve of this seller therefore intersects

the buyers’ indifference curve at a price that reflects the complete liquidity of this tree. To

construct this indifference curve, first compute v̄1 from equations (7)–(9) and the condition

θ1 = 1. Then eliminate vl,1 from equations (8) and (10) and solve for θ2 as a function of p2

given this value of v̄1.

The seller of tree j = 2 is constrained by the need to signal that he holds the high quality

tree. The point (p2, θ2) leaves the seller of a quality 1 tree indifferent between attempting

7The figure assumes βh = 0.9, βl = 0.8, πh = πl = 0.5, δ1 = 1, δ2 = 1.25, and λ = 1, an illustrative
example.
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to sell it for p2 with probability θ2 and selling it for sure at the lower price p1. Moreover,

buyers are willing to purchase quality 2 trees at price p2 when they recognize that they can

resell them with probability θ2. Buyers would only pay a higher price for quality 2 trees if

the resale probability were higher, but then the sellers of quality 1 trees would attempt to

sell at this higher price.

The figure also illustrates the indifference curve of the seller of a quality 2 asset through

the equilibrium price-sale probability pair (p2, θ2). We construct this in the same manner as a

quality 1 seller’s indifference curve. Note that the sellers’ indifference curves satisfy a single-

crossing property, which is key to our separating equilibrium. The owner of a higher quality

tree is willing to accept a greater reduction in the sale probability for a given increase in the

price because the continuation value of holding a higher quality tree is higher. This illustrates

how higher quality trees sell at a higher price but with a lower probability in equilibrium.

Finally, if there are more types of trees, we can use a similar inductive procedure to construct

the price and sale probability for each quality level.

4.2 Competitive Equilibrium

We now turn to a full competitive equilibrium in which λ is endogenous:

Definition 3 A competitive equilibrium is a number λ ∈ [1, βh/βl], a pair of vectors {vh,j} ∈

R
J
+ and {vl,j} ∈ R

J
+, functions Θ : R+ 7→ [0,∞] and Γ : R+ 7→ ∆J , and a nondecreasing

function F : R+ 7→ [0, 1] with support P satisfying the following conditions:

1. ({vh,j}, {vl,j},Θ,Γ, F ) is a partial equilibrium for fixed λ; and

2. the fruit market clears: πh

J
∑

j=1

δjKj = πl

(

J
∑

j=1

Kj

)

∫

P

Θ(p)pdF (p).

A competitive equilibrium is a partial equilibrium plus the market clearing condition that

states that the fruit brought to market by buyers is equal to the value of trees brought to

the market by sellers times the buyer-seller ratio. Recall from Proposition 2 that dF (pj) =

Kj/
∑

j′ Kj′ in partial equilibrium, where pj is the equilibrium price of quality j trees. The

market clearing condition therefore reduces to

πh

J
∑

j=1

δjKj = πl

J
∑

j=1

Θ(pj)pjKj . (11)

The left hand side is the fruit held by buyers at the start of the period, while each term in

the right hand side is the equilibrium cost of purchasing a particular quality tree multiplied

by the buyer-seller ratio for that tree.
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Proposition 3 A competitive equilibrium (λ, {vh,j}, {vl,j},Θ,Γ, F ) exists and is unique. For

fixed values of the other parameters, there exists thresholds π < π̄ such that

πl



















≥ π̄ λ = βh/βl

∈ (π, π̄) ⇒ λ ∈ (1, βh/βl)

≤ π λ = 1.

The proof shows that an increase in the value of fruit to a buyer λ drives down the amount

of fruit that sellers expect to get from selling any quality j tree, that is, pjΘ(pj). Indeed, in

the limit when λ = βh/βl, Θ(pj) = 0 for all j > 1, and so trade breaks down in all but the

worst quality tree. At the opposite limit of λ = 1, buyers are indifferent about purchasing

trees and so Θ(p1) > 1 and buyers are rationed. By varying λ, we find the unique value at

which the fruit market clears.

The proposition also shows that the value of fruit is increasing in the fraction of sellers.

When πl ≥ π̄, the unique equilibrium has λ = βh/βl, the abundance of sellers drives down

the price of trees. In equilibrium, there is only a market in the lowest quality tree and sellers

are indifferent about selling that tree. When πl ≤ π, a shortage of sellers drives up the

price of trees until the point where buyers are indifferent about consuming their fruit. At

intermediate values of πl, βh/βl > λ > 1, there is a market for every quality tree, and buyers

use all their fruit to purchase trees. The thresholds satisfy 1 > π̄ > π > 0 and depend on all

the other model parameters.

5 Positive Implications

We now use our model to explore the link between asymmetric information, asset prices,

and liquidity. We show how private information about the quality of an asset can reduce

the amount of the asset that is traded each period, its liquidity, as well as the price-dividend

ratio of the asset, which we label a fire sale. The emergence of private information about one

asset can therefore raise the price of other safe assets through general equilibrium effects, a

flight-to-quality.

To discuss these issues, we find it useful to extend our environment along two dimensions:

we develop a version of our model in which there are many types of assets and a continuum

of quality levels for each type of asset. We assume that buyers are able to observe an asset’s

type but not its quality level. The assumption that there are many types of assets is useful

for exploring how private information about an asset’s quality affects its price and liquidity,

and for examining how a change in the extent of private information affects the price and
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liquidity of other assets. The assumption that there is a continuum of quality levels for each

type of asset is useful for obtaining closed-form solutions for some key expressions, which we

use in our proofs.

5.1 Two Extensions

We start by formally introducing our two extensions. First, we assume that there are A types

of assets (or more concisely, A assets), named a = 1, . . . , A. All individuals can observe an

asset’s type, but only an asset’s owner knows its quality, the dividend that the asset produces

in each period. The dividends produced by different types and qualities of assets are perfect

substitutes in consumption, so the only practical difference between different types of assets

lies in the extent of the asymmetric information problem. Let Ka denote the measure of

type a assets in the economy.

Second, we let Ga(δ) denote the cumulative distribution of dividends, i.e. the quality

distribution, among type a assets and assume that the support of Ga is the convex interval

[δa, δ̄a], continuous rather than finite. We also let ga denote the associated density when

it exists. If δa = δ̄a, then the asset is safe, since the buyer knows the asset’s quality δ by

observing its type a. Otherwise asymmetric information plays a role in pricing the asset.

The definitions of partial and competitive equilibria are natural extensions of Definitions 1

and 3. For example, the rationing function Θa and belief function Γa are now defined

conditional on the asset’s type a. In addition, the belief function is now a probability

distribution function defined on the interval [δa, δ̄a] for each price p. We omit the relevant

Bellman equations and formal definitions in the interest of space.8

We can prove that for any value of λ ∈ [1, βh/βl], there exists a unique partial equilibrium

in which the price-dividend ratio for any asset reflects its liquidity, with the price Pa(δ)

solving

Pa(δ) = βh

δ(πl + λπh)

λ(1− πlβl − πhβh)− πl(βh − βlλ)Θa(Pa(δ))
(12)

increasing in δ. This equation follows immediately from Bellman equations analogous to

equations (7)–(9) and ensures that buyers are willing to purchase type a, quality δ assets

when the value of consumption is λ. The lowest quality type a asset sells with probability

1, Θa(Pa(δ)) = 1, defining a minimum price pa ≡ Pa(δ) which we can find immediately from

8One minor modification is the market clearing condition when λ = 1 or λ = βh/βl. In the economy
with finitely many quality levels, we used Θ(p1) ≥ 1 to ensure that buyers brought all their dividends to the
market even when λ = 1. Here it is easier to allow buyers to consume a positive fraction of their dividends
and impose Θ(P (δ)) = 1. Similarly, if λ = βh/βl, we had previously imposed Θ(p1) ≤ 1. Here it is easier to
assume that sellers do not necessarily sell all of their worst assets.
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equation (12). Finally, the sale probability of a type a asset at price p is

Θa(p) =
(

pa/p
)

βh
βh−βlλ . (13)

Note that if λ = βh/βl, this implies Θa(p) = 0 whenever p > pa, while otherwise Θa(p)

is strictly decreasing. Equation (13) ensures that a seller holding an asset with dividend δ

prefers to sell it at the price Pa(δ), consistent with equilibrium beliefs.9

These equations hold if δ ∈ [δa, δ̄a] and so p = Pa(δ) ∈ [pa, p̄a]. At lower prices p < pa,

Θa(p) = ∞ and the asset quality is arbitrary. At higher prices p > p̄a, Θa(p) is pinned down

by the indifference curve of the seller of a quality δ̄a asset and buyers believe that they will

get an asset with quality δ̄a at these prices. Using arguments similar to the ones we develop

in a recent working paper, Guerrieri and Shimer (2013), we can prove that this defines the

unique partial equilibrium.10

To construct a competitive equilibrium, we find the value of consumption good λ that

clears the market,

πh

A
∑

a=1

Ka

∫ δ̄a

δa

δdGa(δ) R πl

A
∑

a=1

Ka

∫ δ̄a

δa

Θa(Pa(δ))Pa(δ)dGa(δ) ⇔ λ



















= 1

∈ [1, βh/βl]

= βh/βl.

(14)

If the left hand side exceeds the right hand side, the difference is the measure of the con-

sumption good consumed by buyers. If the right hand side exceeds the left, the difference

represents the value of the lowest quality assets not offered for sale by sellers.11 We can

prove directly from the functional forms of Θ and P that an increase in λ reduces the right

hand side of this inequality, ensuring that the competitive equilibrium is unique.

5.2 Liquidity, Volume, and Price of Different Assets

We start our analysis by asking what properties of an asset make it liquid, lead to a high

volume, and lead to high asking and transactions prices. We define these concepts as follows:

9Sellers choose the price p to maximize Θa(p)(p−βlv̄a(δ)), where v̄a(δ) is the continuation value of holding
a type a asset with quality δ. The first order condition from this problem is Θa(p)+Θ′

a(p)(p− βlv̄a(δ)) = 0.
With this functional form, Θ′

a(p) = − βh

βh−βlλ
Θa(p)/p and so this reduces to λPa(δ) = βhv̄a(δ)), the analog of

equation (7), which ensures that buyers are willing to purchase the asset when the value of the consumption
good is λ.

10An alternative approach that we do not pursue here is to consider the economy with a continuum of
asset qualities as the limit of a sequence of economies with increasingly many quality levels.

11Recall that when λ = βh/βl, Θa(p) = 0 if p > pa.
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Definition 4 The liquidity of asset a is the fraction of the asset sold in each period:

La ≡ πl

∫ δ̄a

δa

Θa(Pa(δ))dGa(δ).

The volume of asset a is the amount of the consumption good exchanged for the asset in

each period:

Va ≡ πl

∫ δ̄a

δa

Θa(Pa(δ))Pa(δ)dGa(δ).

The average asking price of asset a is the unweighted average price of the asset:

Aa ≡

∫ δ̄a

δa

Pa(δ)dGa(δ).

The average transaction price of asset a is the price weighted by sale probabilities:

Ta ≡

∫ δ̄a

δa
Θa(Pa(δ))Pa(δ)dGa(δ)
∫ δ̄a

δa
Θa(Pa(δ))dGa(δ)

.

We focus throughout this section on parameter values for which 1 ≤ λ < βh/βl. If λ = βh/βl,

sellers are indifferent about selling any of their assets and so the above definitions of liquidity

and volume need not apply.12

We first show that if one asset produces κ times the dividends of another asset, prices

are proportional and liquidity is the same for the two assets.

Proposition 4 Assume 1 ≤ λ < βh/βl. Consider any two assets with distributions sat-

isfying G1(κδ) = G2(δ) for all δ and for some κ > 0, so in particular δ1 = κδ2. Then

P1(κδ) = κP2(δ) and Θ1(κp) = Θ2(p) for all p. In particular, the two assets have the

same liquidity, L1 = L2, while volume, asking price, and transaction price are proportional,

V1 = κV2, A1 = κA2, and T1 = κT2.

This claim can be verified directly using equations (12) and (13). The most important

component of this result is that an asset’s liquidity is not related to whether it produces a

high dividend, but instead depends on the second moment of the dividend. We turn to this

relationship next.

We start by showing a particular sense in which an increase in the precision of a seller’s

information about asset quality reduces all four of these concepts. Take two assets and

assume that asset 2 is riskier than asset 1 in the following sense: the quality of asset 2 is the

12In particular, Θa(p) = 0 if p > pa.
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product of quality of asset 1 and an independent, nonnegative random variable with mean

1. That is, the densities satisfy

g2(δ) =

∫ ε̄

ε

h(ε)g1(δ/ε)dε, (15)

where h is a random variable with mean 1 and support [ε, ε̄]. For example, suppose asset 1 is

a safe asset with dividend δ1 = δ̄1 = δ1, Then g2(δ) = h(δ/δ1), so asset 2 is a risky asset with

the same mean as asset 1 but a positive variance. Alternatively, suppose the true quality of

both types of assets is the product of two components, δ and ε, drawn independently from

the densities g1 and h respectively. The owners of asset 1 are only able to observe δ (and,

to keep with the structure of our model, do not observe the dividend and so cannot infer

ε), while the owners of asset 2 can observe both components, and in particular the density

g2. Then sellers of asset 2 have more precise information than sellers of asset 1. Superior

information of this type reduces both asset prices and liquidity:

Proposition 5 Assume 1 ≤ λ < βh/βl. Consider two assets with distributions satisfying

equation (15). Then asset 1 is more liquid, has a higher volume, has a higher average asking

price, and has a higher average transaction price than asset 2.

Despite this proposition, assets with more disperse distributions and the same mean need

not have lower prices and liquidity. A useful counterexample is the case in which two assets

have the same support [δ, δ̄], but one distribution second order stochastically dominates the

other. For example, suppose there are two types of assets and half of all assets are “bad”

while the other half are “good.” A bad asset has a dividend of δ and a good asset has a

dividend of δ̄. The owners of asset 1 initially observe one signal about the quality of the

asset (and again do not later observe the dividend and so cannot update this signal). The

signal is informative about the quality of the asset and may be arbitrarily accurate. Using

Bayes law, it is straightforward to compute the cumulative distribution of the expected

dividend conditional on the single signal, G1(δ) with support [δ, δ̄]. Asset 2 is identical,

except that the owners of asset 2 initially get two independent signals drawn from the same

distribution. Their posterior belief about the quality of the asset is some G2(δ) with support

[δ, δ̄]. An extra signal moves mass towards the extremes, and so the cumulative distribution

G1 second order stochastically dominates G2. In this case, a more accurate signal actually

raises liquidity, volume and average asking price:

Proposition 6 Assume 1 ≤ λ < βh/βl. Consider two types of assets with the same support,

δ1 = δ2 and δ̄1 = δ̄2 and assume that the cumulative distribution function G1 second order

20



stochastically dominates G2. Then asset 1 is less liquid, has a lower volume, and has a lower

average asking price than asset 2.

In general asset 1 need not have a lower average transaction price under these conditions.

The contrasting results in Propositions 5 and 6 indicate two opposing forces from an

increase in the dispersion of an asset’s quality. On the one hand, a reduction in the lower

bound of the support of the quality distribution increases trading frictions and reduces

prices. On the other hand, holding fixed the support of the distribution, liquidity, volume,

and asking prices are convex functions of quality and so on average rise with dispersion.

In general, we expect both of these forces to be at work and so cannot predict whether an

increase in the extent of asymmetric information for one asset compared to another will raise

or lower liquidity, volume, and prices without understanding the exact nature of the change.

In this sense, our theory warns against näıve but perhaps ex ante plausible predictions, such

as that an increase in sellers’ private information will always reduce liquidity, volume, and

prices. This is true only if there is a sufficient decline in the lower bound of the support

of the quality distribution. And of course both of these propositions are contingent on the

assets’ average dividends; if that differs as well, as may be reasonable in many applications,

tthen the results in Proposition 4 are also relevant.

5.3 Fire Sales, Liquidity, and Flight to Quality

Define a fire sale for an asset as a decline in its average asking price and a flight-to-quality

as a simultaneous decrease in the volume of trade for that asset and increase in the volume

of trade and price for other safer assets. This section explores how a change in the extent

of private information about one type of asset’s quality can cause a fire sale for that asset,

a collapse in its liquidity, and consequently a flight-to-quality in a competitive equilibrium.

To be concrete, we assume without loss of generality that the quality distribution of type

1 assets changes from G1 to G̃1, with other distributions unchanged. We only consider a

one time, permanent, and unanticipated change in the distribution, although it would be

straightforward to develop a version of the model in which agents anticipate that the quality

distribution may change in the future. Since the model has no payoff-relevant state variable,

we accordingly perform a comparative statics exercise.

First consider a partial equilibrium exercise in which the value of dividends to buyers,

λ, is held fixed. Then the impact of a change in the asset’s quality is completely described

by the analysis in the previous section. For example, if the dividend is subjected to a

multiplicative shock, liquidity, volume, average asking price, and average transaction price

all decline (Proposition 5). This might be the most natural assumption if the asset’s payoff
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is hit by an idiosyncratic shock. Alternatively, if the dividend’s distribution spreads out

in the sense of second order stochastic dominance but the support of the distribution does

not change, liquidity, volume, and average asking price rise (Proposition 6). This might be

the most natural assumption if sellers receive more private information about the dividend.

Our model again suggests that an adverse shock might correspond to either an increase or

decrease in variance of dividends, depending on the nature of shock.

In any case, a change in the distribution G1 also has a general equilibrium effect through

the value of dividends λ. The following lemma explains how a change in λ affects the

equilibrium.

Lemma 2 Compare the partial equilibrium of two economies which differ only in the value

of λ. Then the liquidity, volume, average asking price, and average transaction price are all

higher for all assets in the economy with a lower value of λ.

The proof is based on differentiating the price function Pa(δ) and liquidity function Θa(Pa(δ))

with respect to λ.

Combining Lemma 2 with the market clearing condition (14), it is straightforward to

compute the impact of a change in the distribution of dividends of one asset which affects the

volume of that asset on the liquidity, volume, average asking price, and average transaction

price of any other asset:

Proposition 7 Consider any change in the distribution of quality for asset 1, from G1 to

G̃1 with
∫

δdG1(δ) =
∫

δdG̃1(δ), that reduces the volume V1 holding λ fixed. If initially

1 < λ ≤ βh/βl, then in a competitive equilibrium, the liquidity, volume, average asking

price, and average transaction price of all other types of assets weakly increase, and strictly

if λ < βh/βl. If initially λ = 1, then the liquidity, volume, average asking price, and average

transaction price of all other types of assets is unchanged.

Proof. By assumption the left hand side of condition (14) is unchanged while the right

hand side, πl

∑A

a=1 KaVa, declines at the initial value of λ. If 1 < λ < βh/βl, this is no longer

an equilibrium, while if λ = 1 it is and if λ = βh/βl it may be. If it is still an equilibrium,

then λ does not change. If not, λ rises to restore equilibrium, as Lemma 2 implies that a

reduction in λ raises Va for all a. Moreover, it implies that this reduction in λ is associated

with an increase in the liquidity, volume, average asking price, and average transaction price

for all other assets.

Combining Propositions 4 and 7 immediately implies:

Corollary 1 Suppose the distribution of quality for asset 1 changes from G1 to G̃1 where

G̃1(δ) = G1(κδ) for all δ and for some κ > 1. If initially 1 < λ < βh/βl, then in a competitive
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equilibrium, the liquidity, volume, average asking price, and average transaction price of all

other types of assets weakly increase. If initially λ = 1, then the liquidity, volume, average

asking price, and average transaction price of all other types of assets is unchanged.

Similarly, combining Propositions 5 and 7 implies

Corollary 2 Suppose the density of quality for asset 1 changes from g1 to g̃1 where g̃1(δ) =
∫ ε̄

ε
h(ε)g1(δ/ε)dε for all δ and for some density h(ε) with

∫ ε̄

ε
εh(ε)dε = 1. If initially 1 <

λ ≤ βh/βl, then in a competitive equilibrium, the liquidity, volume, average asking price, and

average transaction price of all other types of assets weakly increase. If initially λ = 1, then

the liquidity, volume, average asking price, and average transaction price of all other types

of assets is unchanged.

And combining Propositions 6 and 7 implies

Corollary 3 Suppose the density of quality for asset 1 changes from g1 to g̃1, leaving the

support [δ1, δ̄1] and the expected value
∫ δ̄

δ
δg1(δ)dδ =

∫ δ̄

δ
δg̃1(δ)dδ unchanged. Assume g̃1

second order stochastically dominates g1. If initially 1 < λ ≤ βh/βl, then in a competitive

equilibrium, the liquidity, volume, average asking price, and average transaction price of all

other types of assets weakly increase. If initially λ = 1, then the liquidity, volume, average

asking price, and average transaction price of all other types of assets is unchanged.

The market clearing condition implies that in all of these cases, the volume of asset 1,

the asset hit by the shock, must decline; however, the behavior of its price is in general

ambiguous, with partial and general equilibrium effects working in opposite directions. The

direct effect of the shock lowers the average asking price of asset 1, but the equilibrium

impact through λ raises it. In principle, the equilibrium effect may dominate the direct

effect. Nevertheless, the smaller is the share of the consumption good coming from asset 1,

K1

∫ δ̄1

δ1
δdG1(δ)

∑A
a=1Ka

∫ δ̄a

δa
δdGa(δ)

,

the smaller is the equilibrium effect and so the more relevant are the partial equilibrium

results in Propositions 4, 5 and 6.

We view the unanticipated shocks described in these corollaries as a fire sale that induces a

flight-to-quality. Our model offers a simple explanation for how a shock that adversely affects

the volume in one market increases the volume, liquidity, and price in all other markets: it is

a general equilibrium effect. First, any shock that lowers the price and liquidity of one asset

will also lower the volume in that market. Some of the dividends that used to go towards
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purchasing asset 1 will instead be used to purchase alternative assets, particularly those

that are good substitutes.13 For example, a collapse in the market for bonds securitized by

mortgages will raise the price of other bonds, such as sovereign debt.

We close this section with a brief discussion of the welfare consequences of a fire sale and

flight-to-quality episode. In general, there are winners and losers from a flight-to-quality. In-

dividuals who are primarily holding assets other than asset 1 gain, since their assets increase

in price and liquidity. For example, an investor holding U.S. sovereign debt at the start of

the financial crisis benefited from the fire sale in other asset markets. On the other hand,

there are typically some other investors who are made worse off, particularly those trying to

sell asset 1 in the midst of a fire sale. Of course, since we study an endowment economy, we

cannot examine whether a fire sale and flight-to-quality causes a collapse in production, but

we believe that this is likely to be the case if asset sales are needed to facilitate production.

6 Policy Implications

We believe our model may be useful for understanding the potential impact of an asset pur-

chases and subsidies, such as the original vision for the Troubled Asset Relief Program in

2008 or the Public-Private Investment Program for Legacy Assets in 2009. These programs

were designed to alleviate the adverse selection problem in the market for troubled assets,

thereby improving also the solvency of institutions exposed to these assets. This was sup-

posed to occur not only because of the direct subsidy but also through the effect on the price

and liquidity of assets that were not sold to the government.

We show that these predictions are consistent with our model. We analyze two policies.

The first is an asset purchase program. A large actor, say the government, pledges to purchase

any amount of asset a at a price p̂ > pa. The second is an asset subsidy program. Now the

government pledges to pay σ(p) to any seller who sells asset a at price p. We view both of

these policies as feasible, in the sense that they do not give the government information that

is unavailable to other buyers. We show that although both policies are costly, they raise the

liquidity and price of asset a in partial equilibrium. This result goes through for the general

equilibrium when parameters are such that λ = 1 before the intervention, while it may be

dampened when λ > 1.

13Our model in fact predicts that the price of all assets will increase, although this is likely to be an
artefact of our convenient assumption that all assets are perfectly substitutable. Extending our model to
allow for assets that are imperfect substitutes, for example stocks versus bonds, goes beyond the scope of
this paper.
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6.1 Asset Purchase Program

We analyze a one-time, unexpected, permanent intervention in the market. The government

pledges to purchase any type a asset from any seller (individual with a low discount factor)

at a price p̂. It also commits never to resell those assets. We are interested in understanding

the impact of such an asset purchase program. For the rest of this section, we drop the

subscript a and focus our attention on the relevant asset.

A näıve guess is that any quality δ asset with pre-intervention price P (δ) < p̂ would

be sold to the government, leaving the remaining assets to circulate in the private market.

But if this were an equilibrium, it would become common knowledge that there is no risk

of purchasing a type a asset with quality less than P−1(p̂) in the private market, effectively

changing the lower bound on asset quality. This in turn would boost the liquidity and hence

the price of all assets. And the higher prices would induce some holders of assets with quality

less than P−1(p̂) to sell to the private sector rather than the government. Instead, the impact

of an asset purchase program is as follows:

Proposition 8 Consider an asset purchase program at price p̂ > p. In partial equilibrium

with fixed λ, any asset with quality

δ < δ̂ ≡
p̂
(

λ− βh(πl + λπh)
)

βh(πl + λπh)

is sold to the government. Any quality δ ≥ δ̂ > δ sells at a price P̂ (δ) with probability

Θ̂(P̂ (δ)) satisfying

P̂ (δ) = βh

δ(πl + λπh)

λ(1− πlβl − πhβh)− πl(βh − βlλ)Θ̂(P̂ (δ))
and Θ̂(p) = (p̂/p)

βh
βh−βlλ .

The price and liquidity of all assets with quality δ ≥ δ̂ increases: P̂ (δ) > P (δ) and Θ̂(P̂ (δ)) >

Θ(P (δ)).

The proposition states that any asset that is worth less than p̂ even if it could be resold

with probability 1 is sold to the government, while all other assets remain in private hands.

This effectively raises the lower bound on the quality the asset from δ to δ̂, boosting the

price and liquidity of all remaining assets.

We next turn to the implications of the policy for our four aggregate measures, liquidity,

volume, average asking price, and average transaction price. After the policy intervention,

we define these measures only for the assets sold in the private market, those with quality

δ ≥ δ̂. For example, we let L̂ denote the fraction of the assets with δ ≥ δ̂ that are sold in
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each period, and similarly for V̂ , Â, and T̂ . These seem like the relevant empirical measures.

Once the government has purchased all the assets with δ < δ̂, the liquidity of the market

is the fraction of privately-held assets sold each period, the volume is the amount of the

consumption that private agents use to purchase the asset, and the asking and transaction

prices are the unweighted and weighted average price of privately-held assets.

Proposition 9 Consider an asset purchase program at price p̂ > p. In partial equilibrium

with fixed λ < βh/βl, the average asking price and average transaction price increase: Â > A

and T̂ > T . If in addition
∂2 log(1−G(δ))

∂(log δ)2
≤ 0 and δ̄ = ∞, then liquidity and volume increase,

L̂ > L and V̂ > V .

The condition for liquidity and volume to increase places the Pareto distribution G(δ) =

1 − (δ/δ)−κ at the boundary. This condition is necessary for liquidity, in the sense that if
∂2 log(1−G(δ))

∂(log δ)2
≥ 0, our proof establishes that liquidity falls, L̂ < L. The condition for volume

to increase could be weaker, but some condition is needed, as a simple counterexample

shows.14

An asset purchase program will also have general equilibrium effects on the price and

liquidity of the purchased asset a and of all other assets. The exact nature of these effects

depends on other details of the program. For example, what the government does with

the dividends produced by assets it purchases in the program affects the left hand side of

condition (14) and hence affects the equilibrium value of dividends λ. Nevertheless, the logic

behind Lemma 2 and Proposition 7 implies that if the intervention in the market for asset

a raises the volume of asset a and the government does not correspondingly increase the

amount of dividends used to purchase assets, then λ must increase to restore equilibrium.

This then lowers the liquidity, volume, and prices for all other assets and moderates the

direct impact of the intervention on asset a.

6.2 Asset Subsidy Program

We next consider a subsidy program. We assume that whenever an individual purchases a

unit of asset a at a price p, the seller is paid an addition σa(p) ≥ 0 units of the consumption

14We choose parameters to keep the algebra simple. Let λ = 1, βh = 0.8, βl = 0.4, and πh = 0.9. Then

Θ(δ)P (δ) =
48δ̂

5(δ/δ̂) +

√

24 + 25(δ/δ̂)2
.

Assume g(δ) = 11

2
(2 − δ)10 with δ = 1 and δ̄ = 3. This distribution fails our concavity condition for

δ ∈ [1, 2) and satisfies it for δ ∈ (2, 3]. We find that V = 2.69 but then steadily decreases as δ̂ increases. An

intervention that sets δ̂ = 1.15 achieves the lowest volume, V̂ = 2.43.
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good. We assume that the subsidy is decreasing, σ′
a(p) ≤ 0, but that the seller’s take home

income, p + σa(p) is increasing in the sale price, that is, σ′
a(p) > −1. We again drop the

subscript a from our analysis for notational simplicity.

The definition of equilibrium is unchanged except for the introduction of the subsidy

scheme in the analog of the sellers’ Bellman equation (1) for continuous types, that is,

vl(δ) = δ +max
p∈R+

(

min{Θ̂(p), 1}(p+ σ(p)) + (1−min{Θ̂(p), 1})βlv̄(δ)
)

.

In particular, sellers still set optimal prices for their assets given the sale probability Θ(p),

internalizing the fact that they get a subsidy σ(p) if they sell an asset for p. Using this, we

can prove that the price of any asset satisfies

P̂ (δ) = βh

δ(πl + λπh) + πlΘ̂(P̂ (δ))σ(P̂ (δ))

λ(1− πlβl − πhβh)− πl(βh − βlλ)Θ̂(P̂ (δ))
, (16)

while the liquidity solves the differential equation

Θ̂′(p)

Θ̂(p)
=

−βh(1 + σ′(p))

p(βh − λβl) + βhσ(p)
. (17)

with Θ̂(P̂ (δ)) = 1. We omit the proof of this claim, which is unchanged from the economy

without a subsidy. The price of each asset is a natural extension of equation (12) and is

again obtained by combining the analogs of equations (7)–(9). The optimal sale price satisfies

the seller’s first order condition for maximizing problem (6.2). With an arbitrary subsidy

program, we cannot solve explicitly for Θ̂(p), however.

We focus on the impact of an asset subsidy program on the price and sale probability of

the subsidized asset:

Proposition 10 Consider an asset subsidy program σ(p) ≥ 0 with 0 ≥ σ′(p) > −1. In

partial equilibrium with fixed λ, the program raises the price of all assets, P̂ (δ) > P (δ). In

addition, it raises the sale probability of all assets, and proportionately more so for higher

quality assets, Θ̂(P̂ (δ))/Θ(P (δ)) ≥ 1 and is increasing in δ.

Intuitively, a subsidy to selling an asset raises the value of the asset to a buyer and there-

fore raises its equilibrium price. A decreasing subsidy schedule increases the sale probability

of all assets by making it less costly to separate different quality assets: sellers are more

willing to set a low price for a low quality asset when the relative subsidy is higher. More

surprising is that, although the subsidy schedule is decreasing and the subsidy may even fall

to zero, the relative sale probability increases more for the highest quality assets.
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Proposition 11 Consider an asset subsidy program σ(p) ≥ 0 for asset a with 0 ≥ σ′(p) >

−1. In partial equilibrium with fixed λ, the program raises liquidity, volume, average asking

price, and average transaction price.

This result follows almost immediately from the previous proposition.

Our analysis so far focused on a partial equilibrium for fixed λ. Clearly, the subsidy

program may have general equilibrium effects. Their exact nature will depend on the details

of the program, in particular on how taxes are raised to finance the subsidies. For example, a

tax on individuals with high discount factors will make the consumption good scarce and so

raise its value, while a tax on those with low discount factors will have the opposite impact.

For similar reasons, we sidestep any discussion of welfare, since the winners and losers from

any program will depend on who pays for it.

7 Persistent Shocks and Continuous Time

Our model explains how adverse selection can generate illiquid assets that only sell with a

certain probability each period. But suppose that the time between periods is negligible.

Does the illiquidity become negligible as well? We argue in this section that it does not.

Instead, equilibrium requires that a real amount of calendar time elapse before a high quality

asset is sold.

To show this, we return to the economy with one type of asset and a finite number of

quality levels δj . We consider the behavior of the economy when the number of periods per

unit of calendar time increases without bound. That is, we take the limit of the economy as

the discount factors converge to 1, holding fixed the ratio of discount rates (1− βh)/(1− βl)

and the present value of dividends δj/(1 − βs). But as we take this limit, we also want

to avoid changing the stochastic process of shocks. With i.i.d. shocks and very short time

periods, there is almost no difference in preferences across individuals and so the gains from

trade become negligible. We therefore first introduce persistent shocks into the model and

then prove that as the period length shortens, the probability of sale per period falls to zero,

while the probability of sale per unit of calendar time converges to a well-behaved number.

7.1 Persistent Shocks

Assume now that st ∈ {l, h} follows a first order stochastic Markov process and let πss′

denote the probability that the state next period is s′ given that the current state is s. A

partial equilibrium with a fixed value of λ ≥ 1 is still characterized by a pair of functions

{vs,j} ∈ R
2J
+ that represent the value of an individual who starts a period in preference
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state s holding a quality j asset; a function Θ : R+ 7→ [0,∞] representing the buyer-seller

ratio at an arbitrary price p; a function Γ : R+ 7→ ∆J representing the distribution of asset

qualities available at price p; and a nondecreasing function F : R+ 7→ [0, 1] with support P

representing the share of assets available at a price less than or equal to p. The definition

of partial equilibrium is analogous to Definition 1 for the i.i.d. case, except for the obvious

change in the continuation value:

vl,j = δj +max
p

(

min{Θ(p), 1}p+ (1−min{Θ(p), 1})βl(πllvl,j + πlhvh,j)
)

, (1′)

vh,j = δjλ+ βh(πhlvl,j + πhhvh,j)
)

, (3′)

where

λ ≡ max
p

(

min{Θ(p)−1, 1}
βh

∑J

j=1 γj(p)(πhlvl,j + πhhvh,j)

p
+
(

1−min{Θ(p)−1, 1})

)

. (4′)

We omit the formal definition, which simply substitutes these expressions for their i.i.d.

analogs. The characterization of partial equilibrium and proof that it exists and is unique is

similarly unchanged. In equilibrium, quality j assets sell for a price pj satisfying the buyers’

indifference condition

pj =
βh(πhlvl,j + πhhvh,j)

λ
,

while the condition for excluding quality j − 1 assets from the market pins down the sale

probability θj when j ≥ 2

θj
(

pj − βl(πllvl,j−1 + πlhvh,j−1)
)

= min{θj−1, 1}
(

pj−1 − βl(πllvl,j−1 + πlhvh,j−1)
)

.

These equations pin down the value functions, prices, and buyer-seller ratios given λ.

In the model with idiosyncratic shocks, we found that the value of the consumption good

to a high discount factor individual, λ, always lies in the interval [1, βh/βl]. With persistent

shocks, the lower bound, which ensures that high discount factor individuals are willing

to buy assets, pj ≤ βh(πhlvl,j + πhhvh,j), is unchanged. However, the upper bound, which

ensures that low discount factor individuals are willing to sell assets, pj ≥ βl(πllvl,j+πlhvh,j),

is given by the larger root of

βh(λ− (λ− 1)πhl) = βlλ(λ− (λ− 1)πll).

We denote this upper bound by λ̄. It always exceeds 1 and λ̄ > βh/βl if and only if shocks

are persistent, πll > πhl.
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The definition of a competitive equilibrium with persistent shocks is also complicated

by endogeneity of the distribution of asset holdings. In the i.i.d. case, high discount factor

individuals start each period holding a fraction πhKj quality j assets, but this is not true

with persistent shocks. Instead, let µj denote the measure of quality j assets held by high

discount factor individuals at the start of a period. In steady state, this satisfies

µj = πhh (µj + σj) + πlh (Kj − µj − σj) ,

where σj is the measure of quality j assets purchased by high discount factor individuals

each period. High discount factor individuals hold µj + σj quality j assets at the end of

each period, while the rest are held by low discount factor individuals. Multiplying by the

appropriate preference transition probabilities delivers the measure held by high discount

factor individuals at the start of the following period. To solve for µj, we first need to

compute the measure of assets sold each period, σj . This is the product of the measure of

assets for sale times the average sale probability weighted by the fraction of assets that are

of quality j at an arbitrary price p:

σj =

(

∑

j′

(Kj′ − µj′)

)

∫

P

min{Θ(p), 1}γj(p)dF (p).

Alternatively, consistency of supplies with beliefs implies

Kj − µj
∑

j′(Kj′ − µj′)
=

∫

P

γj(p)dF (p),

and so we can rewrite the measure sold as

σj = (Kj − µj)

∫

P
min{Θ(p), 1}γj(p)dF (p)

∫

P
γj(p)dF (p)

,

the product of the measure of assets for sale and the average sale probability. Use this to

solve for µj:

µj =
πlh + (πhh − πlh)

∫
P
min{Θ(p),1}γj (p)dF (p)∫

P
γj(p)dF (p)

1− (πhh − πlh)
(

1−
∫
P
min{Θ(p),1}γj (p)dF (p)

∫
P
γj(p)dF (p)

)Kj. (18)

If πhh = πlh, this reduces to µj = πlhKj = πhhKj, but if shocks are persistent, πhh > πlh,

then µj is increasing in the measure of quality j assets that are sold each period.

We are now in a position to define equilibrium:

Definition 5 A stationary competitive equilibrium with persistent shocks is a number λ ∈
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[1, λ̄], a pair of vectors {vh,j} ∈ R
J
+ and {vl,j} ∈ R

J
+, functions Θ : R+ 7→ [0,∞] and

Γ : R+ 7→ ∆J , a nondecreasing function F : R+ 7→ [0, 1] with support P, and measures

µj ∈ [0, Kj] satisfying the following conditions:

1. ({vh,j}, {vl,j},Θ,Γ, F ) is a partial equilibrium with persistent shocks for fixed λ;

2. the consumption good market clears:

J
∑

j=1

δjµj =

(

J
∑

j=1

(Kj − µj)

)

∫

P

Θ(p)pdF (p); and

3. measures are consistent with trades: µj satisfies equation (18).

If there are a continuum of asset qualities, we can again obtain closed-form solutions. In

particular, arguments analogous to those in Section 5.1 imply the price of a quality δ asset

satisfies

P (δ) =
βhδ(λπhh + πhl + λβl(πhl − πll))(1−Θ(P (δ)))

λ(1− βlπll − βhπhh)− (βhπhl − λβlπll)Θ(P (δ))− λβlβh(πhl − πll)(1−Θ(P (δ)))
(12′)

and the sale probability satisfies

Θ(p) =
λ(1− βl(πll − πhl))− (λ− 1)πhl

(λ− (λ− 1)πhl)(p/p)
βh(λ(1−βl(πll−πhl))−(λ−1)πhl)

βh(λ−(λ−1)πhl)−βlλ(λ−(λ−1)πll) − βlλ(πll − πhl)
. (13′)

These expressions generalize equations (12) and (13) to the model with persistent shocks.

Finally, the share of assets that are of quality δ or less and are held by high discount factor

individuals is

Gh(δ) =

∫ δ

δ

πlh + (πhh − πlh)Θ(P (δ′))

1− (πhh − πlh) (1−Θ(P (δ′)))
dG(δ′). (18′)

We do not prove existence and uniqueness of equilibrium in this environment. For

starters, extending the proof of Proposition 3 is cumbersome because the measures µj are

endogenous and depend on λ. But this can easily be handled using the closed-form solutions

when there are a continuum of asset qualities. More importantly, such a proof would only

establish existence and uniqueness of a stationary competitive equilibrium, not that there is

a unique equilibrium for arbitrary initial conditions. The distinction is important because

µj is a payoff-relevant state variable in the model with persistent shocks. Given an initial

value of the vector {µj}, subsequent trades determine the evolution of this vector, which in

turn determines the evolution of the value of consumption good to a buyer λ. We have not

characterized a partial equilibrium with time-varying λ, indeed we have not even introduced

notation that would allow us to do so. Therefore we cannot discuss the full set of potentially

nonstationary equilibria in this environment. Nevertheless, we believe that our analysis of

stationary equilibria is an important first step.
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7.2 Continuous Time Limit

We are now in a position to consider the continuous time limit of this model. For a fixed

period length ∆ > 0, define discount rates ρs and transition rates qhl and qlh as

ρs =
1− βs

∆
, qhl =

πhl

∆
, and qlh =

πlh

∆
.

Also assume a quality δ asset produces δ∆ units of the consumption good per period. We

interpret 1/∆ as the number of periods within a unit of calendar time. With fixed values of

ρs, qhl, and qlh, the limit as ∆ → 0 (and so βs → 1 and πhl and πlh → 0) then corresponds

to the continuous time limit of the model. We find that in this limit, Θ(p) → 0 but the sale

rate per unit of time converges to a number:

α(p) ≡ lim
∆→0

Θ(p)

∆
=

ρl + qlh + qhl/λ
(

p/p
)

ρl+qlh+qhl/λ

ρl−ρh−(λ−1)(qlh+qhl/λ) − 1

for all p ≥ p, while the price of a quality δ asset converges to

P (δ) =

(

δ
(

qhl + λ(qlh + ρl + α(P (δ)))
)

λρh(qlh + ρl + α(P (δ))) + qhl((λ− 1)α(P (δ)) + λρl)

)

.

In particular, the worst quality asset has dividend per unit of calendar time δ, price P (δ) ≡ p

and no resale risk, α(p) = ∞. This pins down the lowest price,

p =
δλ

(λ− 1)qhl + λρh
.

From the perspective of a seller, α(p) is the arrival rate of a Poisson process that permits

her to sell at a price p. Equivalently, the probability that she fails to sell at a price p > p

during a unit of elapsed time is exp(−α(p)), an increasing function of p that converges to 1

as p converges to infinity and is well-behaved in the limiting economy. One can also find the

arrival rate of trading opportunities to a buyer; this is infinite if p > p and zero if p < p.

To close the model, we can compute the measure of quality δ assets held by high discount

factor individuals, the limit of equation (18′). This gives

Gh(δ) =

∫ δ

δ

qlh + α(P (δ′))

qhl + qlh + α(P (δ′))
dG(δ′).
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Substituting this into the consumption good market clearing condition gives

∫ δ̄

δ

δ(qlh + α(P (δ)))

qhl + qlh + α(P (δ))
dG(δ) ≥

∫ δ̄

δ

α(P (δ))P (δ)qhl
qhl + qlh + α(P (δ))

dG(δ),

with equality if λ > 1. The left hand side is the integral of the dividend per unit of time

δ times the density dGh(δ), i.e. the amount of the consumption good held by high discount

factor individuals at the start of a period. The integrand on the right hand side is the product

of the probability per unit of time of selling a quality δ asset, α(P (δ)), times the price of

the asset, P (δ), times the density of such assets held by low discount factor individuals,

dG(δ)− dGh(δ). Integrating over the support of the dividend distribution gives the amount

of the consumption good required to purchase the assets that are sold at each instant.

In equilibrium, there is a continuum of marketplaces, each distinguished by its price p.

Sellers try to sell their assets in the appropriate market, while buyers bring their consumption

good to markets and possibly consume some of it. In all but the worst market, with price p,

there is always too little of the consumption good to purchase all of the assets. That is, a

stock of assets always remains in the market to be purchased by the gradual inflow of new

buyers. Buyers are able to purchase assets immediately, but sellers and get rid of their assets

only at a Poisson rate and are rationed in the sense that they wish they could sell assets

faster at that price. Of course, a seller could immediately sell her assets for the low price p,

but she chooses not to do so.

More generally, the illiquidity generated by adverse selection does not disappear when

the period length is short. Intuitively, it must take a real amount of calendar time to sell an

asset at a high price or the owners of low quality assets would misrepresent them as being of

high quality. This is in contrast to models where trading is slow because of search frictions.15

In such a framework, the extent of search frictions governs the speed of trading and as the

number of trading opportunities per unit of calendar time increases, the relevant frictions

naturally disappear.

8 Conclusion

We have developed a dynamic model of asset trading in the presence of adverse selection.

There always exists a unique separating equilibrium in which better assets sell for a higher

price but in a less liquid market. We find conditions under which one type of asset is has

lower liquidity, volume, and average asking price and show that this is closely linked to the

15See, for example, Duffie, Gârleanu and Pedersen (2005), Weill (2008), and Lagos and Rocheteau (2009)
for models where assets are illiquid because of search frictions.
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lower bound on the support of the quality distribution. We also show how a change in seller’s

private information for one asset can trigger a fire sale for that asset and a flight to other

types of assets. Finally, we examined how two realistic policy proposals, an asset purchase

program and an asset subsidy program, can raise an asset’s price and liquidity, even if that

asset is neither purchased nor subsidized by the government.

In concluding, we note that we have assumed throughout our analysis that individuals’

discount factors are observable. It seems natural to ask what would happen if both asset

quality and trading motives were private information. In this case, patient individuals might

have an incentive to sell their low quality assets at a high price. We can prove that if

λp1 ≥ pJ in our equilibrium, then the equilibrium allocation is unaffected by this additional

source of private information.16 Intuitively, an unobservable discount factor gives a patient

individual an opportunity to buy a bad asset for p1 and attempt to resell it for pJ > p1. The

reason that this trade might not be profitable is that the individual must use beginning-of-

period dividends, which are worth λ to him, to purchase the asset and he only gets back the

consumption good at the end of the period, which must be consumed and so is worth 1. If

λp1 < pJ in our equilibrium, then unobservable discount factors must change the equilibrium

allocation. In our current research, we show that this can introduce a continuum of semi-

pooling equilibria. In any equilibrium, individuals with different discount factors sell different

types of assets at a common price (Guerrieri and Shimer, 2013).17

16It is straightforward to extend our definition of equilibrium to this environment. The only change in
equilibrium involves beliefs about buyer-seller ratios at very high prices: for p > λp1, Θ(p) = 0 and Γ(p)
is arbitrary. This implies that there is no price at which a patient individual can and would sell any of his
assets.

17The existence of a semi-pooling equilibrium is related to Chang (2011), which develops a version of our
model with two sources of private information. Sellers know both the quality of the asset they are selling
and their cost of holding the asset. However, she assumes that sellers’ holding costs always exceed buyers’ so
there are gains from trade, that an individual’s identity as a buyer or seller is known, and that buyers have
excess consumption good (λ = 1). We are interested in the case where there may be no gains from trade
since an individual’s preferences are unknown, yet scarcity of the consumption good (λ > 1) can sustain
some trade.
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Appendix

Omitted Proofs

Proof of Lemma 1. Consider problem (P1). Given that there is no j′ < 1, the only

constraint is (5). If such a constraint were slack, we could increase p and hence raise the

value of the objective function, which ensures the constraint binds. Eliminating the price by

substituting the binding constraint into the objective function gives

vl,1 = δ1 +max
θ

(

min{θ, 1}
βh min{θ−1, 1}

λ− 1 + min{θ−1, 1}
+ (1−min{θ, 1})βl

)

v̄1.

If λ = 1, any θ1 ≥ 1 attains the maximum. If λ = βh/βl, any θ1 ∈ [0, 1] attains the maximum.

For intermediate values of λ, the unique maximizer is θ1 = 1. Substituting back into the

original problem gives vl,1 = δ1 + p1 and p1 = βhv̄1/λ, establishing the result for j = 1.

For j ≥ 2 we proceed by induction. Assume for all j′ ∈ {2, . . . , j−1}, we have established

the characterization of pj′, θj′, vl,j′ and v̄j′ in the statement of the lemma. We first prove

that v̄j > v̄j−1. To do this, consider the policy (θj−1, pj−1). If this solved problem (Pj),

combining the objective function and the definition of v̄j gives

v̄j =
δj(πhλ+ πl) + πl min{θj−1, 1}pj−1

1− πhβh − πlβl(1−min{θj−1, 1})

>
δj−1(πhλ+ πl) + πl min{θj−1, 1}pj−1

1− πhβh − πlβl(1−min{θj−1, 1})
= v̄j−1.

The inequality uses the fact that the denominator is positive together with δj > δj−1; and the

last equality comes from the objective function and the definition of v̄j−1 in problem (Pj−1).

Since the proposed policy satisfies all of the constraints in problem (Pj−1) and v̄j > v̄j−1, it

also satisfies all the constraints in problem (Pj). The optimal policy must deliver a weakly

higher value, proving v̄j > v̄j−1.

Next we prove that at any solution to problem (Pj) the constraint (5) is binding. If there

were an optimal policy (θ, p) such that it was slack, consider a small increase in p to p′ > p

and a reduction in θ to θ′ < θ so that min{θ, 1}(p− βlv̄j−1) = min{θ′, 1}(p′ − βlv̄j−1) while

constraint (5) is still satisfied. Now suppose for some j′ 6= j − 1, min{θ, 1}(p − βlv̄j′) <

min{θ′, 1}(p′ − βlv̄j′). Subtracting the inequality from the preceding equation gives

(

min{θ, 1} −min{θ′, 1}
)

(v̄j′ − v̄j−1) > 0.
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Given that θ′ < θ, the above inequality yields v̄j′ > v̄j−1 and hence j′ ≥ j. This implies that

the change in policy does not tighten the constraints (6) for j′ < j, while it raises the value

of the objective function in problem (Pj), a contradiction. Therefore constraint (5) must

bind at the optimum.

We now show that the binding constraint (5) implies that θj ≤ 1 for all j ≥ 2. By

contradiction, assume that the solution to problem (Pj) is some (θ, p) with θ > 1. In this

case, the objective function reduces to vl,j = δj + p, while the constraint (6) for j′ = 1

imposes vl,1 ≥ δ1+p. Since we have shown that vl,1 = δ1+p1, this implies p ≤ p1. Moreover,

v̄j > v̄1 implies βhv̄j/λ > βhv̄1/λ = p1 and hence βhv̄j/p > λ. Now a change to the policy

(1, p) relaxes the constraint (5) without affecting any other piece of the problem (Pj) and is

therefore weakly optimal. But this cannot be optimal because (5) is slack, a contradiction.

This proves that θj ≤ 1 for all j ≥ 2 and hence, using the binding constraint (5), pj = βhv̄j/λ.

Next, we prove that if λ < βh/βl, the constraint (6) is binding at j′ = j−1. We break our

proof into two parts. First, consider j = 2 and, to find a contradiction, assume that there is

a solution (θ, p) to problem (P2) such that constraint (6) is slack for j′ = 1. Then problem

(P2) is equivalent to problem (P1) except for the value of the dividend δ2 > δ1. Following

the same argument used for problem (P1), we can show that θ2 ≥ 1 and so constraint (6)

reduces to vl,1 ≥ δ1+p2. But since p1 = βhv̄1/λ < p2 = βhv̄2/λ, this contradicts vl,1 = δ1+p1.

Constraint (6) must bind when j = 2.

Next consider j > 2 and again assume by contradiction that there is a solution (θ, p) to

problem (Pj) such that constraint (6) is slack for j′ = j−1. Then problem (Pj) is equivalent

to problem (Pj−1) except in the value of the dividend δ. Since constraint (6) is binding in

the solution to problem (Pj−1) and θj−1 ≤ 1, we have

vl,j−2 = δj−2 + θj−1pj−1 + (1− θj−1)βlv̄j−2 = δj−2 + θp+ (1− θ)βlv̄j−2,

and hence

θj−1(pj−1 − βlv̄j−2) = θ(p− βlv̄j−2). (19)

Since p = βhv̄j/λ and pj−1 = βhv̄j−1/λ, p− βlv̄j−2 > pj−1 − βlv̄j−2 > 0 and so θj−1 > θ > 0.

But now combine equation (19) with θj−1 > θ and v̄j−1 > v̄j−2 to get

θj−1(pj−1 − βlv̄j−1) < θ(p− βlv̄j−1).

This implies that constraint (6) for j′ = j − 1 is violated, a contradiction. This proves

that constraint (6) must bind whenever λ < βj/βl and establishes all the equations in the

statement of the lemma.
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Alternatively, suppose λ = βh/βl. Since pj = βhv̄j/λ = βlv̄j, the objective function in

problem (Pj) reduces to vl,j = δj + βlv̄j , while constraint (6) imposes

vl,j′ = δj′ + βlv̄j′ ≥ δj′ + βl

(

θv̄j + (1− θ)v̄j′
)

for all j′ < j. Since v̄j > v̄j′, this implies θ = 0 in the solution to the problem. It is easy to

verify that this is implied by the equations in the statement of the lemma.

Finally, we need to prove that there is a unique value of v̄j > v̄j−1 that solves the four

equations in the statement of the lemma. Combining them we obtain

(1− πhβh − πlβl)v̄j = δj(πl + λπh) + πl min{θj−1, 1}

(

βh − βlλ
)2
v̄j−1v̄j

(

βhv̄j − βlλv̄j−1

)

λ
. (20)

If λ = βh/βl, the last term is zero and so this pins down v̄j uniquely. Otherwise we prove

that there is a unique solution to equation (20) with v̄j > v̄j−1. In particular, the left hand

side is a linearly increasing function of v̄j , while the right hand side is an increasing, concave

function, and so there are at most two solutions to the equation. As v̄j → ∞, the left hand

side exceeds the right hand side, and so we simply need to prove that as v̄j → v̄j−1, the right

hand side exceeds the left hand side.

First assume j = 2 so θj−1 = θ1 ≥ 1. Then we seek to prove that

(1− πhβh − πlβl)v̄1 < δ2(πl + λπh) + πl

(

βh − βlλ
)

v̄1

λ
.

Since v̄1 = (δ1λ(πl+λπh))/(λ−βh(πl+λπh)) and δ1 < δ2, we can confirm this directly. Next

take j ≥ 3. In this case, in the limit with v̄j → v̄j−1, the right hand side of (20) converges to

δj(πl + λπh) + πlθj−1

(

βh − βlλ
)

v̄j−1

λ
> δj−1(πl + λπh) + πl min{θj−2, 1}

(

βh − βlλ
)2
v̄j−2v̄j−1

(

βhv̄j−1 − βlλv̄j−2

)

λ
,

where the inequality uses the indifference condition

min{θj−2, 1}(pj−2 − βlv̄j−2) = θj−1(pj−1 − βlv̄j−2)

and the assumption δj−1 < δj . The right hand side of the inequality is the same as the right

hand side of equation (20) for quality j−1. The desired inequality then follows by comparing

the left hand side of the inequality to the left hand side of equation (20) for quality j − 1.
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This completes the proof.

Proof of Proposition 2.

We first prove that the solution to problem (P ) describes a partial equilibrium and then

prove that there is no other equilibrium.

Existence. As in the statement of the proposition, we look for a partial equilibrium where

P = {pj}, Θ(pj) = θj , γj(pj) = 1, dF (pj) = Kj/
∑

j′ Kj′, and vs,j solves problem (Pj). Also

for notational convenience define pJ+1 = ∞. To complete the characterization, we define Θ

and Γ on their full support R+. For p < p1, Θ(p) = ∞ and Γ(p) can be chosen arbitrarily,

for example γ1(p) = 1. For j ∈ {1, . . . , J} and p ∈ (pj, pj+1), γj(p) = 1 and Θ(p) satisfies

sellers’ indifference condition vl,j = δj+min{Θ(p), 1}p+
(

1−min{Θ(p), 1}
)

βlv̄j ; equivalently,

min{Θ(pj), 1}(pj−βlv̄j) = min{Θ(p), 1}(p−βlv̄j). To prove that this is a partial equilibrium,

we need to verify that the five equilibrium conditions hold.

To show that the third and fourth equilibrium conditions—Buyers’ Optimality and Active

Markets—are satisfied, it is enough to prove that the prices {pj} solve the optimization

problem in equation (4). Lemma 1 implies that pj = βhv̄j/λ for all λ and j; and Θ(pj) ≤ 1

if λ > 1. Together these conditions imply that any price pj achieves the maximum in this

optimization problem. For any price p ∈ (pj , pj−1), γj(p) = 1 by construction, and so the

right hand side of equation (4) is smaller than when evaluate at pj. Moreover, for any p < p1,

Θ(p) = ∞ and so the right hand side is 1 ≤ λ.

Next we prove that min{Θ(pj), 1}(pj−βlv̄j) ≥ min{Θ(p), 1}(p−βlv̄j) for all j and p, with

equality if p ∈ [pj , pj+1). The first and second equilibrium conditions—Sellers’s Optimality

and Equilibrium Beliefs— follow immediately from this. The equality holds by construction.

Let us now focus on the inequalities.

First take any j′ ∈ {2, . . . , J}, j < j′, and p ∈ [pj′, pj′+1). By the construction of Θ,

min{Θ(pj′), 1}(pj′ − βlv̄j′) = min{Θ(p), 1}(p− βlv̄j′).

Then pj′ ≤ p implies that min{Θ(pj′), 1} ≥ min{Θ(p), 1}. Since j < j′, Lemma 1 implies that

v̄j′ > v̄j and so min{Θ(pj′), 1}(v̄j′− v̄j) ≥ min{Θ(p), 1}(v̄j′− v̄j). Adding this to the previous

equation gives min{Θ(pj′), 1}(pj′ − βlv̄j) ≥ min{Θ(p), 1}(p − βlv̄j). Also condition (6) in

problem (Pj′) implies min{Θ(pj), 1}(pj − βlv̄j) ≥ min{Θ(pj′), 1}(pj′ − βlv̄j). Combining

the last two inequalities gives min{Θ(pj), 1}(pj − βlv̄j) ≥ min{Θ(p), 1}(p − βlv̄j) for all

p ∈ [pj′, pj′+1) and j < j′.

Similarly, take any j′ ∈ {1, . . . , J − 1}, j > j′, and p ∈ [pj′, pj′+1). The construction of Θ
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implies min{Θ(pj′), 1}(pj′ − βlv̄j′) = min{Θ(p), 1}(p− βlv̄j′), while Lemma 1 together with

Θ(pj) = θj implies min{Θ(pj′), 1}(pj′ − βlv̄j′) = min{Θ(pj′+1), 1}(pj′+1 − βlv̄j′). The two

equalities together imply

min{Θ(pj′+1), 1}(pj′+1 − βlv̄j′) = min{Θ(p), 1}(p− βlv̄j′)

Then pj′+1 > p implies min{Θ(pj′+1), 1} ≤ min{Θ(p), 1}. Since j > j′, Lemma 1 im-

plies that v̄j > v̄j′ and so min{Θ(pj′+1), 1}(v̄j′ − v̄j) ≥ min{Θ(p), 1}(v̄j′ − v̄j). Adding

this to the previous equation gives min{Θ(pj′+1), 1}(pj′+1 − βlv̄j) ≥ min{Θ(p), 1}(p− βlv̄j).

Also, since (Θ(pj′+1), pj′+1) is a feasible policy in problem (Pj), min{Θ(pj), 1} (pj − βlv̄j) ≥

min{Θ(pj′+1), 1}(pj′+1 − βlv̄j). Combining inequalities gives min{Θ(pj), 1}(pj − βlv̄j) ≥

min{Θ(p), 1}(p− βlv̄j) for all p ∈ [pj′, pj′+1) and j > j′.

Finally, consider p < p1. Since Θ(p) = ∞, min{Θ(p), 1}(p−βlv̄j) = p−βlv̄j < p1−βlv̄j ≤

min{Θ(p1), 1}(p1 − βlv̄j), where the first inequality uses p < p1 and the second uses the fact

that Θ(p1) < 1 only if λ = βh/βl; but in this case, p1 = βlv̄1 ≤ βlv̄j . Since we have

already proved that min{Θ(p1), 1}(p1−βlv̄j) ≤ min{Θ(pj), 1}(pj−βlv̄j), this establishes the

inequality for p < p1.

The last piece of the definition of equilibrium is Consistency of Supplies with Beliefs. This

holds by the construction of the distribution function F in the statement of the Proposition.

Uniqueness. Now take any partial equilibrium {{vh,j}, {vl,j},Θ,Γ, F}. We first claim that

v̄ is increasing in j. Take j > j′ and let pj′ denote the price offered by j′. Type j Sellers’

Optimality implies

vl,j ≥ δj +min{Θ(pj′), 1}pj′ + (1−min{Θ(pj′), 1})βlv̄j,

and so combining with quality j Buyers’ Optimality, equation (3), and solving for v̄j gives

v̄j ≥
δj(πl + πhλ) + πl min{Θ(pj′), 1}pj′

πl(1−min{Θ(pj′), 1})βl + πhβh

>
δj′(πl + πhλ) + πl min{Θ(pj′), 1}pj′

πl(1−min{Θ(pj′), 1})βl + πhβh

= v̄j′,

where the second inequality uses δj > δj′ and the equality solves the same equations for v̄j′.

Consistency of Supplies with Beliefs implies that for each j ∈ {1, . . . , J}, there exists a

price pj ∈ P with γj(pj) > 0.

Now in the remainder of the proof, assume also that θj ≡ Θ(pj) > 0. First we prove

that the constraint λ ≤ min{θ−1
j , 1}βhv̄j/pj +(1−min{θ−1

j , 1}) is satisfied. Second we prove

that the constraint vl,j′ ≥ δj′ +min{θj , 1}pj + (1−min{θj, 1})βlv̄j′) is satisfied for all j′ < j.

Third we prove that the pair (θj , pj) delivers value vl,j to sellers of quality j trees. Fourth
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we prove that (θj , pj) solves (Pj).

Step 1. To derive a contradiction, assume λ > min{θ−1
j , 1}βhv̄j/pj + 1 − min{θ−1

j , 1}.

Active Markets implies that the expected value of a unit of fruit to a buyer who pays pj

must equal λ and so there must be a j′ with γj′(pj) > 0 and λ < min{θ−1
j , 1}βhv̄j′/pj + 1 −

min{θ−1
j , 1}. If θj = ∞, min{θ−1

j , 1}βhv̄j′/pj +1−min{θ−1
j , 1} = 1 ≤ λ, which is impossible;

therefore θj < ∞. Then Equilibrium Beliefs implies pj is an optimal price for quality j′ sellers

and so for all p′ and θ′ ≡ Θ(p′), min{θj , 1}(pj − βlv̄j′) ≥ min{θ′, 1}(p′ − βlv̄j′). Since θj > 0,

min{θj, 1}(p
′ − βlv̄j′) > min{θj, 1}(pj − βlv̄j′) for all p′ > pj, and so the two inequalities

imply min{θj , 1} > min{θ′, 1}.

Now take any j′′ < j′, so v̄j′′ < v̄j′. Then since min{θj , 1}(pj − βlv̄j′) ≥ min{θ′, 1}(p′ −

βlv̄j′), min{θj , 1} > min{θ′, 1}, and v̄j′′ < v̄j′ ,

min{θj , 1}(pj − βlv̄j′′) > min{θ′, 1}(p′ − βlv̄j′′).

Type j′′ Sellers’ Optimality condition implies v̄j′′ ≥ δj′′ +min{θj , 1}pj+(1−min{θj, 1})βlv̄j′′

and so the previous inequality gives v̄j′′ > δj′′ +min{θ′, 1}p′+(1−min{θ′, 1})βlv̄j′′ . Rational

beliefs implies γj′′(p
′) = 0. That is, any p′ > pj attracts only quality j′ sellers or higher and

so delivers value at least equal to min{θ′−1, 1}βhv̄j′/p
′ + (1−min{θ′−1, 1}) to buyers. For p′

sufficiently close to pj , this exceeds λ, contradicting buyers’ optimality.

Step 2. Sellers’ Optimality implies vl,j′ ≥ δj′ + min{θj , 1}pj + (1 − min{θj, 1})βlv̄j′) for

all j′, pj , and θj = Θ(pj).

Step 3. Equilibrium Beliefs implies vl,j = δj +min{θj , 1}pj +(1−min{θj , 1})βlv̄j′) for all

j, pj, and θj = Θ(pj) < ∞ with γj(pj) > 0.

Step 4. Suppose there is a policy (θ, p) that satisfies the constraints of problem (Pj) and

delivers a higher payoff. That is,

vl,j < δj +min{θ, 1}p+ (1−min{θ, 1})βlv̄j

λ ≤ min{θ−1, 1}βhv̄j/p+ 1−min{θ−1, 1}

vl,j′ ≥ δj′ +min{θ, 1}p+ (1−min{θ, 1})βlv̄j′ for all j
′ < j.

If these inequalities hold with θ > 1, then the same set of inequalities holds with θ = 1, and

so we may assume θ ≤ 1 without loss of generality. Choose p′ < p such that

vl,j < δj + θp′ + (1− θ)βlv̄j (21)

λ < βhv̄j/p
′ (22)

vl,j′ > δj′ + θp′ + (1− θ)βlv̄j′ for all j
′ < j. (23)
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The previous inequalities imply that this is always feasible by setting p′ close enough to p.

Now sellers’ optimality implies vl,j ≥ δj +min{Θ(p′), 1}p′ + (1−min{Θ(p′), 1})βlv̄j), which,

together with inequality (21), implies Θ(p′) < θ. This together with inequality (23) implies

that

vl,j′ > δj′ +Θ(p′)p′ + (1−Θ(p′))βlv̄j′ for all j
′ < j,

and so, due to Equilibrium Beliefs, γj′(p
′) = 0 for all j′ < j. But then, using inequality (22),

we obtain

λ <
βhv̄j
p′

≤
βh

∑J

j′=1 γj′(p
′)v̄j′

p′
= min{Θ(p′)−1, 1}

βh

∑J

j′=1 γj′(p
′)v̄j′

p′
+
(

1−min{Θ(p′)−1, 1}),

where the second inequality uses monotonicity of v̄j and γj′(p
′) = 0 for j′ < j; and the last

equation uses Θ(p′) < θ ≤ 1. This contradicts Buyers’ Optimality condition and completes

the proof.

Proof of Proposition 3. To prove that there exists a unique competitive equilibrium, it

is enough to prove that there exists a unique λ ∈ [1, βh/βl] such that the partial equilibrium

associated to that λ clears the fruit market.

For given λ ∈ [1, βh/βl], let xj(λ) ≡ θj(λ)pj(λ), where θj(λ) and pj(λ) are the partial

equilibrium sale probability and price for quality j trees. For all j > 1 and given xj−1(λ),

define

fj(xj , λ) ≡ xj

[

1−
βl

βh

λ
pj−1(xj−1(λ), λ)

pj(xj , λ)

]

− xj−1(λ)

[

1−
βl

βh

λ

]

,

where, with some abuse of notation,

pj(xj , λ) =
δjβh(πl + λπh) + xjπl[βh − βlλ]

λ(1− β̄)
. (24)

Given λ ∈ [1, βh/βl], Proposition 2 and Lemma 1 ensure that pj(xj(λ), λ) is the equilibrium

price for quality j trees with xj(λ) being implicitly defined by fj(xj , λ) = 0 for all j > 1.

Moreover, for λ ∈ (1, βh/βl)

x1(λ) = p1(x1(λ), λ) =
δ1βh(πl + λπh)

λ− βh(πl + λπh)
. (25)

Lemma 1 also implies that pj(xj(λ), λ) > pj−1(xj−1(λ), λ) for all j > 1. From fj(xj , λ) = 0

for all j > 1 immediately follows that xj(λ) < xj−1(λ) for all j > 1.
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Next, define M(λ) as

M(λ) ≡

J
∑

j=1

[πhδj − πlxj(λ)]Kj.

Market clearing requires M(λ) = 0. Now we show that x′
j(λ) < 0 and hence M ′(λ) > 0 for

all λ ∈ (1, βh/βl). For j = 1 we can directly calculate

x′
1(λ) = −

δ1βhπl

[λ− βh(πl + λπh)]2
< 0.

For all j > 1, given x′
j−1(λ) < 0 we can proceed recursively as follows. Applying the implicit

function theorem to fj(xj , λ) = 0, we obtain

x′
j(λ) = −

∂fj(xj , λ)/∂λ

∂fj(xj , λ)/∂xj

.

First, we can calculate

∂fj(xj , λ)

∂xj

= 1−
βl

βh

λ
pj−1(xj−1(λ), λ)

pj(xj , λ)
+ xj

βl

βh

λ
pj−1(xj−1(λ), λ)

pj(xj , λ)2
∂pj(xj , λ)

∂xj

.

It is easy to show that ∂fj(xj , λ)/∂xj > 0 given that pj(xj(λ), λ) > pj−1(xj−1(λ), λ) and

∂pj(xj , λ)

∂xj

=
πl[βh − βlλ]

λ(1− β̄)
> 0.

Second, we can calculate

∂fj(xj , λ)

∂λ
=
βl

βh

[

xj−1(λ)− xj

pj−1(xj−1(λ), λ)

pj(xj , λ)

]

−

(

1−
βl

βh

λ

)

x′
j−1(λ)

−
βl

βh

λ
xj

pj(xj , λ)

∂pj−1(xj−1(λ), λ)

∂xj−1(λ)
x′
j−1(λ)

−
βl

βh

λ
xj

pj(xj , λ)

[

∂pj−1(xj−1(λ), λ)

∂λ
−

pj−1(xj−1(λ), λ)

pj(xj , λ)

∂pj(xj , λ)

∂λ

]

where the first term is positive because xj(λ) < xj−1(λ) and pj(xj(λ), λ) > pj−1(xj−1(λ), λ),

the second term is positive because λ ∈ (1, βh/βl) and x′
j−1(λ) < 0, and the third term is

positive because of the last inequality together with ∂pj(xj , λ)/∂λ > 0. Finally, to show that

the last term is also positive we need to show that the term in square bracket is positive

where
∂pj(xj , λ)

∂λ
= −

βhπl(δj + xj)

λ2(1− β̄)
.
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Using expression (24) for pj(xj , λ) and fj(xj, λ) = 0 for all j, after some algebra, one can

show that this is always the case given that λ ∈ (1, βh/βl). This implies that x′
j(λ) < 0 for

all j and hence M ′(λ) > 0.

Finally, define

π ≡

∑J
j=1 δjKj

∑J

j=1[δj + xj(0)]Kj

and π ≡

∑J
j=1 δjKj

∑J

j=1[δj + xj(βh/βl − 1)]Kj

,

where x1(λ) is given in equation (25) and xj(λ) solves fj(xj , λ) = 0 for all j > 1. It is easy to

see that π < π given that x′
j(λ) < 0. Moreover, M(0) < 0 iff πl > π and M(βh/βl−1) > 0 iff

πl < π. Given that M ′(λ) > 0, it follows that if πl ∈ (π, π), there exists a unique equilibrium

with λ ∈ (1, βh/βl). If instead πl ≤ π, then both M(0) and M(βh/βl − 1) are larger than

zero, while if πl ≥ π, they are both smaller than zero. Lemma 1 implies that x1(λ) ≥ p1(λ)

if λ = 1 and x1(λ) ≤ p1(λ) if λ = βh/βl. This implies that if πl ≤ π, there exists a unique

equilibrium with λ = 1, where x1(0) ≥ p1(0) is pinned down by market clearing. If instead

πl ≥ π, then there exists a unique equilibrium with λ = βh/βl, where x1(0) ≤ p1(0) is pinned

down by market clearing. This completes the proof.

Proof of Proposition 4. It is straightforward to verify that if P1 and Θ1 satisfy equa-

tions (12) and (13) with p1 = P1(δ), then the specified functions P2 and Θ2 satisfy the same

pair of equations with p2 = P2(κδ). The remaining results follow directly from the definition

of liquidity, volume, asking price, and transaction price.

Proof of Proposition 5. By construction, δ2 = δ1ε. Now equation (12) implies p2 = p1ε

since Θ2(p2) = Θ1(p1) = 1. Then equation (13) implies Θ1(p) = Θ2(pε) for all p > 0. Finally,

equation (12) implies Θ1(P1(δ)) = Θ2(P2(δε)) and P2(δε) = P1(δ)ε for all δ > 0. We use

these relationships throughout our proof, which we break into pieces corresponding to the

four claims.

Liquidity. The liquidity of type 2 assets is

L2 = πl

∫ δ̄1

δ1

∫ ε̄

ε

Θ2(P2(δ1ε))h(ε)g1(δ1)dεdδ1 < πl

∫ δ̄1

δ1

∫ ε̄

ε

Θ2(P2(δ1ε))h(ε)g1(δ1)dεdδ1 = L1.

The inequality uses the fact that P2 is increasing and Θ2 is decreasing. The second equality

uses Θ2(P2(δ1ε)) = Θ1(P1(δ1)) and integrates over ε.

45



Volume. We have proved that L2 < L1. Below we prove T2 < T1. The definition of Va

then implies V2 < V1.

Asking Price. The average asking price of type 2 assets is

A2 =

∫ δ̄1

δ1

∫ ε̄

ε

P2(δ1ε)h(ε)g1(δ1)dεdδ1 <

∫ δ̄1

δ1

∫ ε̄

ε

P2(δ1ε)
ε

ε
h(ε)g1(δ1)dεdδ1 = A1.

The inequality uses the fact that price-dividend ratio is lower for higher quality assets,

that is P2(δ)/δ is decreasing in δ since Θ(p) is decreasing (equation 12). The equality uses

P1(δ1) = P2(δ1ε)/ε and integrates over ε.

Transaction Price. We break this into two pieces. Consider first the average transaction

price for all type 2 assets with dividend δ2 = δε, conditional on the value of δ. This is

T2(δ) ≡

∫ ε̄

ε
Θ2(P2(δε))P2(δε)h(ε)dε
∫ ε̄

ε
Θ2(P2(δε))h(ε)dε

.

We again use the fact that the price-dividend ratio is decreasing in δ and hence P2(δε)/ε <

P2(δε)/ε = P1(δ) for all ε > ε to get

T2(δ) < P1(δ)

∫ ε̄

ε
Θ2(P2(δε))εh(ε)dε

∫ ε̄

ε
Θ2(P2(δε))h(ε)dε

.

Now, because the function Θ2(P2(δε)) is decreasing in ε, the likelihood ratio Θ2(P2(δε))h(ε)
h(ε)

is

monotone decreasing. It follows that the generalized density Θ2(P2(δε))h(ε) is first order

stochastically dominated by the density h(ε). This implies that the preceding expression is

smaller than

P1(δ)

∫ ε̄

ε
εh(ε)dε

∫ ε̄

ε
h(ε)dε

= P1(δ),

since the expected value of ε is 1. This proves T2(δ) < P1(δ).

Now express the average transaction price for type 2 assets as a weighted average of the

average transaction price conditional on δ:

T2 =

∫ δ̄

δ

(

∫ ε̄

ε
Θ2(P2(δε))h(ε)dε

)

T2(δ)g1(δ)dδ

∫ δ̄

δ

(

∫ ε̄

ε
Θ2(P2(δε))h(ε)dε

)

g1(δ)dδ
<

∫ δ̄

δ

(

∫ ε̄

ε
Θ2(P2(δε))h(ε)dε

)

P1(δ)g1(δ)dδ

∫ δ̄

δ

(

∫ ε̄

ε
Θ2(P2(δε))h(ε)dε

)

g1(δ)dδ
,

(26)
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where the inequality uses T2(δ) < P1(δ). Consider how the difficulty of selling a type δε

asset changes with δ and ε. Using the functional form for Θ in equation (13),

∂ logΘ2(P2(δε))

∂δ
= −

βh

βh − λβl

εP ′
2(δε)

P2(δε)
.

We prove that this is decreasing in ε, i.e. that Θ2(P2(δε)) is log-submodular in δ and ε. This

is true if and only if the elasticity of P2 is increasing. Implicitly differentiate equation (12)

and use the functional form for Θ(p) in equation (13) to get

δP ′
a(δ)

Pa(δ)
=

[

1 +
πl

πl + λπh

Pa(δ)

δ
Θa(Pa(δ))

]−1

This elasticity is increasing in δ since both Pa(δ)/δ and Θa(Pa(δ)) are decreasing. This

establishes log-submodularity of Θ2(P2(δε)). Equivalently, for any δ1 < δ2 and ε < ε,

Θ2(P2(δ1ε))

Θ2(P2(δ1ε))
>

Θ2(P2(δ2ε))

Θ2(P2(δ2ε))

Weighting by h(ε) and integrating over ε ∈ [ε, ε̄], this implies

∫ ε̄

ε
Θ2(P2(δε))h(ε)dε

Θ2(P2(δε))

is decreasing in δ. Once again, since the relevant likelihood ratio is monotone, the generalized

density
( ∫ ε̄

ε
Θ2(P2(δε))h(ε)dε

)

g1(δ) is first order stochastically dominated by the generalized

density Θ2(P2(δε))g1(δ). Since P1(δ) is increasing, this implies

∫ δ̄

δ

(

∫ ε̄

ε
Θ2(P2(δε))h(ε)dε

)

P1(δ)g1(δ)dδ

∫ δ̄

δ

(

∫ ε̄

ε
Θ2(P2(δε))h(ε)dε

)

g1(δ)dδ
<

∫ δ̄

δ
Θ2(P2(δε))P1(δ)g1(δ)dδ
∫ δ̄

δ
Θ2(P2(δε))g1(δ)dδ

.

The left hand side is bigger than T2 by inequality (26), while Θ2(P2(δε)) = Θ1(P1(δ)) implies

that the right hand side is equal to T1.

Proof of Proposition 6. Since the two assets have the same support, the pricing function

P (δ) and the buyer-seller ratio Θ(p) are the same as well. Implicitly differentiate P (δ) using

equation (12) and the functional form for Θ(p) in equation (13) to prove the price function

is convex:

P ′′(δ) =
πlβlβhΘ(P (δ))P ′(δ)2

(βh − λβl)
(

1− πhβh − πlβl(1−Θ(P (δ)))
)

P (δ)
> 0.
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Similarly, differentiate Θ(P (δ)) and simplify using the same equations:

d2Θ(P (δ))

dδ2
=

P ′′(δ)

P (δ)πlβl

(

βh(1− πhβh − πlβl)

βh − λβl

+ 1− πhβh − πlβl(1−Θ(P (δ)))

)

> 0.

Finally, implicitly differentiate Θ(P (δ))P (δ):

d2Θ(P (δ))P (δ)

dδ2
=

λP ′′(δ)(1− πhβh − πlβl)

πl(βh − λβl)
> 0

Since all three of these functions are convex and G1 second order stochastically dominates

G2, the result immediately follows from the definition of liquidity, volume, and average asking

price.

Proof of Lemma 2. Differentiate equations (12) and (13) to prove that for all a and δ,

Pa(δ) and Θa(Pa(δ)) are decreasing functions of λ. We find that

∂Pa(δ)

∂λ
=

−πlPa(δ)

βh(λπh + πl)2
(

δ
Pa(δ)

+ Θa(Pa(δ))πl

λπh+πl

)

×

(

Θa(Pa(δ))
(

πlβh(1− πhβh − πlβl) + λ(1− πhβh)(πhβh + πlβl)
)

λ(1− βh(πh + πl/λ))

+ (1− πhβh − πlβl)− βl(λπh + πl)Θa(Pa(δ)) logΘa(Pa(δ))

)

< 0

and

∂Θa(Pa(δ))

∂λ
=

−Θa(Pa(δ))

λ(βh − λβl)
(

1− πhβh − πlβl(1−Θa(Pa(δ)))
)

×

(

πlβ
2
h(1−Θa(Pa(δ)))(1− πhβh − πlβl)

λ(1− βh(πh + πl/λ))
−

δβlβh(πl + λπh) logΘa(Pa(δ))

Pa(δ)

)

< 0.

It follows immediately that liquidity, volume, and average asking price are decreasing in λ.

To prove average transaction price is decreasing in λ, we use the fact that when λ is

higher, Θa falls more for higher values of δ, and so the generalized density Θa(Pa(δ))dGa(δ)

is higher in the sense of first order stochastic dominance when λ is lower. Again directly
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using equations (12), and (13), we obtain

∂(Θa(Pa(δ1))/Θa(Pa(δ2)))

∂λ
=

βh

z(βh − λβl)

(

−
βlβh

(βh − λβl)2
log z

+
πl

λ2(1− βh(πh + πl/λ))
(

1− πhβh − πlβl(1− θ1)
)(

1− πhβh − πlβl(1− zθ1)
)

×
(

βhθ1(1− πhβh)(1− πhβh − πlβl)(1− z + z log z)

− θ1
(

πlβ
2
l λ(1− βh(πh + πl/λ))(1− θ1) + (βh − λβl)(1− πhβh)

2
)

z log z

− λβl(1− βh(πh + πl/λ))(1− πhβh − πlβl)(1− z)θ1 log θ1

)

)

,

where θ1 ≡ Θa(Pa(δ1)) and z ≡ Θa(Pa(δ2))/Θa(Pa(δ1)). If δ1 < δ2, z < 1 and θ1 ≤ 1,

and so one can verify that each line in this expression is nonnegative and all but the last

is positive. Thus higher values of λ both reduce the price of each quality and increase the

relative likelihood that low quality goods are sold, reducing the average transaction price.

Proof of Proposition 8. It is straightforward to prove that the expressions in the

statement of the proposition describe an equilibrium. We again can use the arguments in

Guerrieri and Shimer (2013) to prove that this is the unique equilibrium.

The next step in the proof is based on comparative statics in p̂:

∂ log P̃ (δ)

∂ log p̂
=

πlβhΘ̃(P̃ (δ))

λ
(

1− πhβh − πlβl(1− Θ̃(P̃ (δ)))
) > 0.

In addition, it is straightforward to verify that Θ̂(P̂ (γδ̂)) = Θ(P (γδ)) for all γ > 1. Since

Θ̂(P̂ (δ)) is a decreasing function, δ̂ > δ implies Θ(P (γδ)) < Θ̂(P̂ (γδ)) for all γ, so liquidity

of all assets is higher under the asset purchase program.

Proof of Proposition 9. Throughout this proof, let Ĝ(δ) ≡ G(δ)−G(δ̂)

1−G(δ̂)
denote the quality

distribution of the asset in the private market, with associated density ĝ.

Average Asking Price. By definition,

Â =

∫ δ̄

δ̂

P̂ (δ)ĝ(δ)dδ >

∫ δ̄

δ̂

P (δ)ĝ(δ)dδ >

∫ δ̄

δ

P (δ)g(δ)dδ = A,
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where the first inequality uses the fact that for every quality δ, P̂ (δ) > P (δ) and the second

uses the fact that Ĝ(δ) first order stochastically dominates G(δ) and P (δ) is increasing.

Average Transaction Price. Let D(p) and D̂(p) denote the inverse of P (δ) and P̂ (δ)

respectively. Then

T̂ =

∫ P̂ (δ̄)

p̂
Θ̂(p)p dG(D̂(p))

∫ P̂ (δ̄)

p̂
Θ̂(p) dG(D̂(p))

>

∫ P (δ̄)

p̂
Θ(p)p dG(D(p))

∫ P (δ̄)

p̂
Θ(p) dG(D(p))

> T.

The first inequality uses the fact that P̂ (δ) > P (δ) for all δ > δ̂ implies D̂(p) < D(p) for

all p > p̂, and so G(D̂(p)) < G(D(p)), i.e. the first distribution first order stochastically

dominates the second. Since Θ̂(p) ∝ Θ(p), the generalized density Θ̂(p)dG(D̂(p)) therefore

first order stochastically dominates Θ(p)dG(D(p)). The second inequality holds because T

is a weighted average of the expected price conditional on p > p̂ and a smaller number, the

expected price conditional on p ∈ [p, p̂].

Liquidity. By definition,

L̂ = πl

∫ ∞

δ̂

Θ̂(P̂ (δ))ĝ(δ)dδ = πl

∫ ∞

1

Θ(P (γδ))ĝ(γδ̂)dγ,

since Θ̂(P̂ (γδ̂)) = Θ(P (γδ)). Next, the log concavity condition is equivalent to δG′(δ)
1−G(δ)

non-

decreasing. This in turn holds if and only if (G(γδ)−G(δ))/(1−G(δ)) is nondecreasing in

δ for all γ. Therefore Ĝ(γδ̂) ≥ G(γδ) for all γ > 1, so the distribution relevant for L̂ is first

order stochastically dominated by the distribution relevant for L. Since Θ is decreasing, this

implies
∫ ∞

1

Θ(P (γδ))ĝ(γδ̂)dγ ≥

∫ ∞

1

Θ(P (γδ))g(γδ)dγ) = L.

This proves L̂ > L.

Volume. This follows immediately from the increase in liquidity and average transaction

price.

Proof of Proposition 10.

Prices. Since Θ(P (δ)) = Θ̂(P̂ (δ)) = 1, equations (12) and (16) imply P̂ (δ) > P (δ).

Equation (13) implies Θ is decreasing and so Θ(P̂ (δ)) < 1. Next equations (13) and (17)
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imply that Θ̂′(p)/Θ̂(p) > Θ′(p)/Θ(p) for all p and so Θ̂(p) > Θ(p) for all p ≥ P̂ (δ).

Now suppose to find a contradiction that P̂ (δ) ≤ P (δ) for some δ ≥ δ. Then since

Θ̂(p) > Θ(p) for all p ≥ P̂ (δ) and both are decreasing functions, Θ̂(P̂ (δ)) > Θ(P (δ)). Since

σ(P̂ (δ)) ≥ 0,

δ(πl + λπh) + πlΘ̂(P̂ (δ))σ(P̂ (δ))

λ(1− πlβl − πhβh)− πl(βh − βlλ)Θ̂(P̂ (δ))
>

δ(πl + λπh)

λ(1− πlβl − πhβh)− πl(βh − βlλ)Θ(P (δ))
.

Using equations (12) and (16), this implies P̂ (δ) > P (δ), a contradiction.

Sale Probabilities. Totally differentiate equation (16) with respect to δ. Then use equa-

tion (17) to prove that

P̂ ′(δ) =
βh(λπh + πl)

λ
(

1− βhπh − βlπl(1− Θ̂(P̂ (δ)))
) ,

a function of the subsidy only indirectly through Θ̂(P̂ (δ)). Then using equation (17), we

obtain

∂ log Θ̂(P̂ (δ))

∂δ
=

−β2
h(λπh + πl)(1 + σ′(P̂ (δ)))

λ
(

1− βhπh − βlπl(1− Θ̂(P̂ (δ)))
)(

P̂ (δ)(βh − λβl) + βhσ(P̂ (δ))
) ,

and similarly for ∂ logΘ(P (δ))
∂δ

. Since Θ̂(P̂ (δ)) = Θ(P (δ)) = 1, P̂ (δ) > P (δ), and σ(P̂ (δ)) >

0 > σ′(P̂ (δ)), this proves
∂ log Θ̂(P̂ (δ))

∂δ
>

∂ logΘ(P (δ))

∂δ
. The same logic implies that at any δ > δ,

if Θ̂(P̂ (δ)) ≥ Θ(P (δ)), then ∂ log Θ̂(P̂ (δ))
∂δ

> ∂ logΘ(P (δ))
∂δ

. This implies Θ̂(P̂ (δ)) > Θ(P (δ)) for

all δ > δ, as we prove in the next paragraph.

First, note that Θ̂(P̂ (δ)) = Θ(P (δ)) and
∂ log Θ̂(P̂ (δ))

∂δ
>

∂ logΘ(P (δ))

∂δ
implies that there exists

an ε > 0 such that for all δ ∈ (δ, δ + ε), Θ̂(P̂ (δ)) > Θ(P (δ)). Fix any δ1 ∈ (δ, δ + ε). Now

suppose there is a δ > δ with Θ̂(P̂ (δ)) ≤ Θ(P (δ)). Let δ2 denote the smallest such δ. Then

log Θ̂(P̂ (δ2))− log Θ̂(P̂ (δ1)) =

∫ δ2

δ1

∂ log Θ̂(P̂ (δ))

∂δ
dδ

>

∫ δ2

δ1

∂ log Θ(P (δ))

∂δ
dδ = logΘ(P (δ2))− logΘ(P (δ1)),

where the inequality uses the result from the previous paragraph that ∂ log Θ̂(P̂ (δ))
∂δ

> ∂ logΘ(P (δ))
∂δ

for all δ ∈ [δ1, δ2] since Θ̂(P̂ (δ)) ≥ Θ(P (δ)) by construction. But since Θ̂(P̂ (δ1)) > Θ(P (δ1)),

this implies Θ̂(P̂ (δ2)) > Θ(P (δ2)), a contradiction. This proves Θ̂(P̂ (δ)) > Θ(P (δ)) for all

δ > δ and so, using the result from the previous paragraph, ∂ log Θ̂(P̂ (δ))
∂δ

> ∂ logΘ(P (δ))
∂δ

, which
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is equivalent to Θ̂(P̂ (δ))/Θ(P (δ)) increasing.

Proof of Proposition 11. The statement about liquidity, volume, and average asking price

follow trivially from the results in Proposition 10. The same proposition shows also that the

likelihood ratio Θ̂(P̂ (δ))/Θ(P (δ)) is increasing and so the generalized density Θ̂(P̂ (δ))g(δ)

first order stochastically dominates Θ(P (δ))g(δ). This implies that the average transaction

price also increases with the subsidy program.
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Online Appendix

Individual’s Problem: Details

For any period t, history st−1, and quality j ∈ {1, . . . , J}, let ki,j,t(s
t−1) denote individual

i’s beginning-of-period t holdings of quality j trees. For any period t, history st, quality

j ∈ {1, . . . , J}, and set P ⊂ R+, let qi,j,t(P ; st) denote his net purchase in period t of

quality j trees at a price p ∈ P . The individual chooses a history-contingent sequence

for consumption ci,t(s
t) and measures of tree holdings ki,j,t+1(s

t) and net tree purchases

qi,j,t(P ; st) to maximize his expected lifetime utility

∞
∑

t=0

∑

st

(

t−1
∏

τ=0

πsτβsτ

)

πstci,t(s
t).

This states that the individual maximizes the expected discounted value of consumption,

given the stochastic process for the discount factor. The individual faces a standard budget

constraint,
J
∑

j=1

δjki,j,t(s
t−1) = ci,t(s

t) +

∫ ∞

0

p

(

J
∑

j=1

qi,j,t({p}; s
t)

)

dp,

for all t and st. The left hand side is the fruit produced by the trees he owns at the start of

period t. The right hand side is consumption plus the net purchase of trees at nonnegative

prices p. He also faces a law of motion for his tree holdings,

ki,j,t+1(s
t) = ki,j,t(s

t−1) + qi,j,t(R+; s
t),

for all j ∈ {1, . . . , J}. This states that the increase in his tree holdings is given by his net

purchase of that quality tree. Finally, the individual faces a set of constraints that depends

on whether his discount factor is high or low.

If the individual has a high discount factor, st = h, he is a buyer, which implies qi,j,t(P ; st)

is nonnegative for all j ∈ {1, . . . , J} and P ⊂ R+. In addition, he must have enough fruit to

purchase trees,

J
∑

j=1

δjki,j,t(s
t−1) ≥

∫ ∞

0

max{Θ(p), 1}p

(

J
∑

j=1

qi,j,t({p}; s
t)

)

dp.

If the individual wishes to purchase q trees at a price p and Θ(p) > 1, he will be rationed

and so must bring Θ(p)pq fruit to the market to make this purchase. This constrains his
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ability to buy trees in markets with excess demand. Together with the budget constraint,

this also ensures consumption is nonnegative. Finally, he can only purchase quality j trees

at a price p if individuals are selling them at that price, that is

qi,j,t(P ; st) =

∫

P

γj(p)

(

J
∑

j′=1

qi,j′,t({p}; s
t)

)

dp

for all j ∈ {1, . . . , J} and P ⊂ R+. The left hand side is the quantity of quality j trees

purchased at a price p ∈ P . The integrand on the right hand side is the product of quantity

of trees purchased at price p and the share of those trees that are of quality j.

If the individual has a low discount factor, st = l, he is a seller, which implies qi,j,t(P ; st)

is nonpositive for all j ∈ {1, . . . , J} and P ⊂ R+. In addition, he may not try to sell more

trees than he owns:

ki,j,t(s
t−1) ≥ −

∫ ∞

0

max{Θ(p)−1, 1}qi,j,t({p}; s
t)dp,

for all j ∈ {1, . . . , J}. Each tree only sells with probability min{Θ(p), 1} at price p, so if

Θ(p) < 1, an individual must bring Θ(p)−1 trees to the market to sell one of them. Sellers

are not restricted from selling trees in the wrong market. Instead, in equilibrium they will

be induced not to do so.

Let V̄ ∗({kj}) be the supremum of the individuals’ expected lifetime utility over feasible

policies, given initial tree holding vector {kj}. We prove in Proposition 1 that the function

V̄ ∗ satisfies the following functional equation:

V̄ ({kj}) = πhVh({kj}) + πlVl({kj}), (27)

where

Vh({kj}) = max
{qj ,k′j}

(

J
∑

j=1

δjkj −

∫ ∞

0

p

(

J
∑

j=1

qj({p})

)

dp+ βhV̄ ({k′
j})

)

(28)

subject to k′
j = kj + qj(R+) for all j ∈ {1, . . . , J}

J
∑

j=1

δjkj ≥

∫ ∞

0

max{Θ(p), 1}p

(

J
∑

j=1

qj({p})

)

dp,

qj(P ) =

∫

P

γj(p)

(

J
∑

j=1

qj({p})

)

dp for all j ∈ {1, . . . , J} and P ⊂ R+

qj(P ) ≥ 0 for all j ∈ {1, . . . , J} and P ⊂ R+,
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and

Vl({kj}) = max
{qj ,k′j}

(

J
∑

j=1

δjkj −

∫ ∞

0

p

(

J
∑

j=1

qj({p})

)

dp+ βlV̄ ({k′
j})

)

(29)

subject to k′
j = kj + qj(R+) for all j ∈ {1, . . . , J}

kj ≥ −

∫ ∞

0

max{Θ(p)−1, 1}qj({p})dp for all j ∈ {1, . . . , J},

qj(P ) ≤ 0 for all j ∈ {1, . . . , J} and P ⊂ R+,

We now prove Proposition 1 working with the recursive version of the individuals’ problem.

Let Θ̄(p) ≡ max{Θ(p), 1} and Θ(p) = min{Θ(p), 1}. Fix Θ and Γ and take any positive-

valued numbers {vs,j} and λ that solve the Bellman equations (1), (3), and (4) for s = l, h.

Let ph be an optimal price for buying trees,

ph ∈ argmax
p

(

Θ̄(p)−1

(

βh

∑J
j=1 γj(p)v̄j

p
− 1

))

.

Similarly let pl,j be an optimal price for selling quality j trees,

pl,j = argmax
p

Θ(p)
(

p− βlv̄j
)

for all δ. We seek to prove that V̄ ∗({kj}) ≡
∑J

j=1 v̄jkj where v̄j = πhvh,j + πlvl,j.

If λ = 1, equations (1) and (3) imply

v̄j = πh

(

δj + βhv̄j
)

+ πl

(

δj +Θ(pl,j)pl,j + (1−Θ(pl,j))βlv̄j
)

.

for all δ. Equivalently,

v̄j =
δj + πlΘ(pl,j)pl,j

1− πhβh − πlβl(1−Θ(pl,j))
> 0.

Alternatively, if λ > 1, the same equations imply

v̄j = πh

(

δj

(

(

1− Θ̄(ph)
−1
)

+ Θ̄(ph)
−1

βh

∑J

j′=1 γj′(ph)v̄j′

ph

)

+ βhv̄j

)

+ πl

(

δj +Θ(pl,j)pl,j + (1−Θ(pl,j))βlv̄j
)
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for all δ. Since vl,j and vh,j are positive by assumption so is v̄j , and equivalently we can write

v̄j

(

1− πhβh − πlβl(1−Θ(pl,j))− πhβhΘ̄(ph)
−1

δj
∑J

j′=1 γj′(ph)v̄j′

phv̄j

)

= πhδj
(

1− Θ̄(ph)
−1
)

+ πl

(

δj +Θ(pl,j)pl,j
)

.

The right hand side of this expression is positive for all j. Once again since v̄j > 0, with

λ > 1, this holds if and only if

1− πhβh − πlβl(1−Θ(pl,j)) > πhβhΘ̄(ph)
−1

δj
∑J

j′=1 γj′(ph)v̄j′

phv̄j
. (30)

If this restriction fails at any prices ph and pl,j, it is possible for an individual to obtain

unbounded expected utility by buying and selling trees at the appropriate prices. We are

interested in cases in which it is satisfied.

Next, let V̄ ({kj}) =
∑J

j=1 v̄jkj and Vs({kj}) ≡
∑J

j=1 vs,jkj for s = l, h. It is easy to prove

that V̄ and V̄s solve equations (27), (28), and (29) and that the same policy is optimal.

Finally, we adapt Theorem 4.3 from Werning (2009), which states the following: suppose

V̄ (k) for all k satisfies the recursive equations (27), (28), and (29) and there exists a plan

that is optimal given this value function which gives rise to a sequence of tree holdings

{k∗
i,j,t(s

t−1)} satisfying

lim
t→∞

∑

st

(

t−1
∏

τ=0

πsτβsτ

)

V̄ ({k∗
i,j,t(s

t−1)}) = 0. (31)

Then, V̄ ∗ = V̄ .

If λ = 1, an optimal plan is to sell quality j trees at price pl,j when impatient and not to

purchase trees when patient. This gives rise to a non-increasing sequence for tree holdings.

Given the linearity of V̄ , condition (31) holds trivially.

If λ > 1, it is still optimal to sell quality j trees at price pl,j when impatient, but patient

individuals purchase trees at price ph and do not consume. Thus

k′
h,j = kj + Θ̄(ph)

−1γj(ph)

∑J
j′=1 δj′kj′

ph

k′
l,j =

(

1−Θ(pl,j)
)

kj.

Using linearity of the value function, the expected discounted value next period of an indi-

56



vidual with tree holdings {kj} this period is

J
∑

j=1

v̄j
(

πhβhk
′
h,j + πlβlk

′
l,j

)

=
J
∑

j=1

v̄j

(

πhβh

(

kj + Θ̄(ph)
−1γj(ph)

∑J

j′=1 δj′kj′

ph

)

+ πlβl

(

1−Θ(pl,j)
)

kj

)

=

J
∑

j=1

v̄jkj

(

πhβh + πlβl

(

1−Θ(pl,j)
)

+ πhβhΘ̄(ph)
−1

δj
∑J

j′=1 γj′(ph)v̄j′

phv̄j

)

,

where the second equality simply rearranges terms in the summation. Equation (30) implies

that each term of this sum is strictly smaller than v̄jkj. This implies that there exists an

η < 1 such that

η >

∑J

j=1 v̄j
(

πhβhk
′
h,j + πlβlkl,j

)

∑J
j=1 v̄jkj

=
πhβhV̄ ({k′

h,j}) + πlβlV̄ ({k′
l,j})

V̄ ({kj})
,

and so condition (31) holds.
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